摘要
设z_1,…,z_n是来自m维正态总体N_m(0,∑)的子样,本文在一个同变估计类D={h_1(w)A+h_2(w)yy':h_1,h_2为任意可测函数}(其中A=sumfrom n=1 to ∞(1\n)z_1z_2,y=n^(1/2)(?),(?)=1/n(z_1+...+z_n),W=y A^(-1)y)中讨论了方差阵z在损失函数L_1(∑δ)=tr(∑^(-1)δ)-l_n|∑^(-1)δ|-m和L_2(∑,δ)=tr(∑^(-1)δ-I)~2下的最优估计问题.
Let Xl, 晻? Xn are iid Normal (Nm(0, ))random vectors,, it is known that in the estimation classes D = {A; a is a con-
and A are best estimatiors of under loss bunctions
respectively. In this paper, we get the resuits that in the estimation classes D* = {h1(y'A-1y) ?A + h2y1A-1y)
·yy':h1,h2, are measurable funtions} A and A are best estimators of un-
der loss functions L1 and L2 respectively.
出处
《黑龙江大学自然科学学报》
CAS
1993年第2期22-27,共6页
Journal of Natural Science of Heilongjiang University
关键词
多元正态分布
最优估计
方差阵
Estimation of covariance, Multi-Normal distribution