摘要
本文研究Sobolev-Galpern型方程u_t=u_(xxt)+σ(u_x)_x具边界条件u_x(0,t)=u_x(1,t)=0与u(0,t)=u_x(1,t)=0的初边值问题,设σ∈C^1,σ~1(S)下方有界,得到整体强解的存在唯一性.
This paper studies the initial -boundary value problems of equation of Sobolev-Galpern type ut=uxxt +(ux)x with boundary conditions ux(0,ti) =ux(1,t) = 0 and u(0,t) = ux[(l,t) = 0. Suppose that σ∈C', σ '(s) is lower bounded, then we can obtain the existence and uniqueness of the global strong Solution.
出处
《黑龙江大学自然科学学报》
CAS
1993年第4期24-27,共4页
Journal of Natural Science of Heilongjiang University
基金
黑龙江省自然科学基金
关键词
非线性
拟抛物型方程
初边值问题
Nonlinear pseudoparabolic equation
Second boundary conditions
Ini-tial-boundary value
Global Solution