期刊文献+

基于改进的自组织映射网络的遥感影像融合研究

MODIFIED KOHONEN NETWORKS BASED REMOTE SENSING IMAGE FUSION
下载PDF
导出
摘要 多源遥感影像融合是富集遥感海量数据的最有价值的技术手段。本文给出了一种新的基于改进的自组织映射网络的遥感影像融合模型。选择浙江绍兴为典型研究区 ,以LandsatTM( 1 0m)与SPOT 4Pan ( 1 0m)融合数据为例 ,进行了融合实验与分析。实验结果表明 ,应用基于改进的自组织映射网络模型进行融合 ,分类融合结果较好 ,较基于基本自组织映射网络的影像融合分类精度提高约 8%。 The paper puts forward a modified Kohonen networks based remote sensing image fusion model.Chosen the Shaoxing city,Zhejing Province,as the study site,a fusion experiment was done using Landsat TM(10m)data and SPOT-4 Pan(10m)data.The result shows that the fusion image using the modified Kohonen networks in better than that using the Kohonen networks only,and the classification accuracy is improved about 8 percent.
出处 《计算机应用与软件》 CSCD 北大核心 2004年第10期80-82,共3页 Computer Applications and Software
关键词 自组织映射网络 遥感影像 海量数据 影像融合 分类精度 模型 TM 合数 技术手段 实验结果 Image fusion Kohonen networks Modified kohonen networks
  • 相关文献

参考文献6

  • 1Cappellini V.,Chiuderi A.and Fini S.,1994,Neural networks in remote sensing multisensor data processing,Proceedings 14th EARSeL symposium,Goteborg,Sweden,6-8,June,pp.457-462.
  • 2Gail A.Carpenter,Marin N.Gjaja,Sucharita Gopal,Curtsi E.Woodcock,1997,ART neural networks for remote sensing:vegetation classification from Landsat TM and terrain data,IEEE Transaction on Geoscience and Remote Sensing,35(2):308~325.
  • 3J.A.Benediktsson,P.H.Swain,O.K.Ersoy,1990,Nerual network approaches versus statistical methods in classification of multisource remote sensing data,IEEE Transaction on Geoscience and Remote Sensing,28(4):540-552.
  • 4Liis O.Jimenezz,Anibal Marales-Morell,Antonio Creus,1999,Classification of hyperdimensional data based on feature and decision fusion approaches using projection pursuit,majority voting,and neural networks,IEEE Transaction on Geoscience and Remote Sening,
  • 5Sebastiano B.Serpico,Fabio Roli,1995,Classification of multisensor remote sensing images by structured neural networks,IEEE Transaction on Geoscience and Remote Sensing,33(3):562-578.
  • 6Weijian Wan and Donald Fraser,1999,Multisource data fusion with multiple self-organizing maps,IEEE Transaction on Geopscience and Remote Sening,37(3):1344-1349.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部