期刊文献+

一种基于并行算法的逆M矩阵的判定方法

Method for judging inverse M-matrix and its parallel algorithm
下载PDF
导出
摘要 提出了一种判断三角矩阵是否为逆 M 矩阵的方法,并根据 Wahid Nasri 的求矩阵的逆的思想,给出了判断三角矩阵是否为逆 M 矩阵的算法,并且在分别在两台,四台并行机上,利用并行虚拟机 PVM(ParallelVirtual Machine)平台,编制程序进行了数值试验及算法的复杂度分析。 A method to judge whether a triangular matrix is an inverse M-matrix is advanced. Based on the ideas of Wahid Nasri, which is for computing the inverse of a matrix, the programming of numerical experiment and analysis of the complexity of the al- gorithm are completed .
出处 《燕山大学学报》 CAS 2004年第5期463-466,共4页 Journal of Yanshan University
  • 相关文献

参考文献6

  • 1游兆永.非奇M矩阵[M].华中理工学院,1981..
  • 2Wahid Nasri, zaher Mabjonb. Optimal parallelization ofa recursive algorithm for triangular matrix inversion on MIMD computers [J].Parallel Computing, 2001, (27): 1767-1782.
  • 3Mordechai Lewin. On the inverse M-matrix problem for (0,1)-matrix [J]. Linear Algebra and its Applications, 1980, (30): 41-50.
  • 4Ilan Baron. A Practical Parallel Algorithm for Solving Band Symmetric Positive Definite Systems of Linear Equations [J]. ACM Transactions on Mathematical Software, 1987,13 (4): 323-332.
  • 5Lesie Hogben. Inverse M-matrix completions of patterns omitting some diagonal positions [J]. Linear Algebra and its Applications,2000, (313): 173-192.
  • 6Shaun M fallat, Michael Neumann. On perron completions of total nonnegative matrices [J]. Linear Algebra and its Applications,2001, (327): 85-94.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部