摘要
在文献[1]和[2]中,已经给出Schro dinger方程和一类抛物型方程的概率数值解法。本文将此概率数值方法推广到求解一类非常一般的椭园型方程。其思想是使用关于Brown运动的随机微分方程表示椭园方程解的随机表达式中出现的Markov过程。
In [1] and [2], a probabilistic numerical solution was given for schrodinger equation and a class of parabolic equation. In this paper, the probabilistic numerical method is genaralized to solve a class of very general elliptic equations, The idea is to use the stochastic differential equation with respect to Brownian motion to represent the Markov process which appear in the stochastic representation of the solution of the elliptic equation.
出处
《内蒙古大学学报(自然科学版)》
CAS
CSCD
1989年第1期19-25,共7页
Journal of Inner Mongolia University:Natural Science Edition
关键词
概率数值解法
随机微分方程
Probabilistic Numerical Solution Method
Monte-Carlo Method
Stochastic Differential Equation
Brownian Motion
Markov Processes