期刊文献+

Banach空间中有限簇广义集值拟变分包含 被引量:2

A finite family of generalized set-valued quasi-variational inclusions in Banach spaces
下载PDF
导出
摘要 推广了Banach空间中广义拟变分包含概念,研究了有限簇集值拟变分包含的解的存在性及其迭代逼近方式,给出了变分包含解的一般条件和结论,改进和推广了一些最新的成果. This paper aims to study the existence and approximation problem of solutions for a finite family of generalized set valued quasi-variational inclusions in Banach spaces,and give its generalized conditions and some new results.The research findings were found to be able to improve some recent results.
作者 王元恒
出处 《浙江师范大学学报(自然科学版)》 CAS 2004年第2期109-114,共6页 Journal of Zhejiang Normal University:Natural Sciences
基金 浙江省教育厅科研资助项目(20020868)
关键词 BANACH空间 广义集值拟变分包含 存在性 变分包含解 迭代逼近 有限 推广 结论 成果 一般 finite family quasi-variational inclusion iterative sequence accretive mapping
  • 相关文献

参考文献12

  • 1Huang N J.Generalized nonlinear variational inclusions with noncompact valued mappings[J].Appl Math Lett,1996,9(3):25-29.
  • 2Noor M A.Generalized set-valued variational inclusions and resolvent equations[J].J Math Anal Appl,1998(228):206-220.
  • 3Uko L V.Strongly nonlinear generalized equations[J].J Math Anal Appl,1998(220):65-76.
  • 4Noor M A.Multivalued quasi variational inclusions and implicit resolvent equations[J].Nonliear Analysis,2002(48):159-174.
  • 5Chang S S.Generalized set-valued variational inclusions in Banach spaces[J].J Math Anal Appl,2000(246):409-422.
  • 6Chang S S.Some results for asymptotically pseudo-contractive mappings and asymptotically nonexpansive mappings[J].American Math SOc,2000,129(3):845-853.
  • 7滕兴虎,张晓岚.Banach空间中的隐式集值变分包含[J].徐州师范大学学报(自然科学版),2002,20(3):5-11. 被引量:1
  • 8傅俊义,江慎铭,罗贤强.一类广义变分包含的迭代解[J].应用泛函分析学报,2003,5(3):276-280. 被引量:6
  • 9Nadler S B.Multi-valued contraction mappings[J].Pacific J Math,1969(30):475-488.
  • 10Chang S S.Some problems and results in the study of nonlinear analysis[J].Nonlinear Anal TMA.1997(30):4 197-4 208.

二级参考文献20

  • 1[1]Baiocchi C, Capelo A. Vartiational and Quasivariational Inequalities, Applications to Free Boundary Problems[M]. Wiley, New York, 1984.
  • 2[2]Mosco U. Implicit Variational Problems and Quasi-variational Inequalities [M]. in Lecture Notes in Math, 543: 83-156, Spring-Verlag, Berlin, 1976.
  • 3[3]Pascali D, Sburlan S. Nonlinear Mappings of Monotone Type[M]. Sijthoff &. Noordhoff, Romania,1978.
  • 4[4]Hassouni A, Moudafi A. A perturbed algorithm for variational inclusions[J]. J Math Anal Appl, 1994,185: 706-712.
  • 5[5]Ding X P. Perturbed proximal point algorithms for generalized quasivariational inclusions[J]. J Math Anal Appl, 1997, 210: 88-101.
  • 6[6]Huang N J. Generalized nonlinear variational inclusions with noncompact valued mappings[J]. Appl Math Lett, 1996, 9: 25-29.
  • 7[7]Huang N J. On the generalized implicit quasivariational inequalities[J]. J Math Anal Appl, 1997, 216:197-210.
  • 8[8]Nadler S B. Multi-valued contraction mappings[J]. Pacific J Math, 1969, 30: 475-488.
  • 9[9]Noor M A. Stronly nonlinear variational inequlities[J]. C R Math Rep Acad Sci Canada, 1982, 4: 213-218.
  • 10[10]Noor M A. On the nonlinear complementarity problem[J]. J Math Anal Appl, 1987, 123: 455-460.

共引文献5

同被引文献8

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部