期刊文献+

声子晶体弹性波带隙理论计算及实验研究 被引量:11

Elastic wave band gaps of 1D and 2D phononic crystals: theory and experiment
下载PDF
导出
摘要  声子晶体是一种具有弹性波带隙的新型结构功能材料。本文在详细介绍声子晶体弹性波带隙计算方法———平面波展开法的基础上,采用该方法计算了一维金属/丁腈橡胶杆状结构声子晶体及二维空气中正方形排列的钢管阵列声子晶体的弹性波带隙并进行了实验验证,实验结果同理论计算结果吻合较好。 Phononic crystal was a composite with periodical structure of two or more materials with different density and elasticity, which has elastic wave band gaps. As a widely used method on calculating band structures of phononic crystals, plane wave expansion (PWE) method was investigated. The band structures of 1D phononic crystal consisting of steel and NBR and 2D phononic crystals consisting of square arrays of hollow stainless steel cylinders in the air were calculated with this method. Band gaps were found in both systems. The calculated band gaps were examined by vibration and sound experiments.
出处 《功能材料》 EI CAS CSCD 北大核心 2004年第5期657-659,共3页 Journal of Functional Materials
基金 国家重点研究基础发展计划(973计划)资助项目(51307)
关键词 声子晶体 弹性波带隙 晶格常数 Band structure Cylinders (shapes) Elasticity Lattice constants Stainless steel Vibrations (mechanical)
  • 相关文献

参考文献7

  • 1Joannopoulos J D, Meade R D, Winn J N. Photonic Crystals[M]. Princeton:Princeton University Press, 1995.
  • 2Yablonovitch E. [J]. Physics Review Letters, 1987, 58:2059.
  • 3John S. [J]. Physics Review Letters, 1987, 58:2486.
  • 4Wu F G, Liu Z Y, Liu Y Y. [J]. Journal of Physics D:Applied Physics, 2002,35:162.
  • 5Kushwaha M S, Djafari-Rouhani B. [J]. Journal of Applied Physics, 2000,88:2877.
  • 6Vasseur J O, Deymier P A, Chenni B. [J]. Physics Review Letters,2001,86:3012.
  • 7Kafesaki M, Penciu R S, Economou E N. [J]. Physics Review Letters,2000,84:6050.

同被引文献95

引证文献11

二级引证文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部