期刊文献+

噪声引导混沌同步的同步时间分析 被引量:1

Analysis of Synchronization Time Based on Noise-induced Chaotic Synchronization
原文传递
导出
摘要 以Logistic映射为物理模型,计算了噪声混沌系统的Lyapunov指数谱,并利用其分析了噪声分布区间与同步时间的关系,发现同步时间与噪声分布区间内的平均Lyapunov指数直接相关,若该区间的平均Lyapunov指数越小,则同步时间越短。最后,提出了一种基于统计分析的时间阈值估算方法,并用该方法估算了Logistic系统在不同同步精度下的时间阈值。 Taken Logistic map as physical model, this article calculated Lyapunov exponents of noise chaotic system and analysed the relation of noise distributed-interval and synchronization time. It found that synchronization time is related directly to the mean Lyapunov exponent which is due to noise distributed-interval. The synchronization time becomes smaller as the mean exponent becomes smaller. Finally, an estimate method of time threshold based on statistics analysis was proposed and estimated time thresholds of Logistic map.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2004年第10期1201-1203,共3页 Journal of Optoelectronics·Laser
基金 国家自然科学基金资助项目(60202011) 吉林省科技发展计划资助项目(20020605) 中科院长春光机所三期青年创新基金资助项目(Q03Q18Z)
关键词 Logistic系统 混沌同步 LYAPUNOV指数 混沌系统 平均 区间 时间 噪声 LOGISTIC映射 阈值 Chaos theory Lyapunov methods Random processes Security of data Spurious signal noise Telecommunication
  • 相关文献

参考文献8

  • 1Pecora L M,Carroll T L.Synchronization in chaotic circuits[J].Phys Rev Lett,1990,38:821-824.
  • 2Pecora L M,Carroll T L.Driving system with chaotic signals[J].Phys.Rev A,1991,44(4):2374-2383.
  • 3Peng J H,Ding E J,Ding M,et al.Synchronizing hyperchaos with a scalar transmitted signal[J].Phys Rev Lett,1996,76(6):904-907.
  • 4Martian A,Banavar J R.Chaos,noise,and synchronization[J].Phys Rev Lett,1994,72(10):1451-1546.
  • 5Minai Ali A,Anand Tirunelveli.Chaos-induced synchronization in discrete-time oscillators driven by a random input[J].Physical Review E,1998,57:1559-1562.
  • 6Minai Ali A,Durai Pandian T.Communicating with noise:How chaos and noise combine to generate secure encryption keys[J].Chaos,1998,8(3):621-628.
  • 7Minai Ali A,Anand Tirunelveli.Synchronization of chaotic maps through a noisy coupling channel with application to digital communication[J].Phys Rev E,1998,59(1):312-320.
  • 8Raul Toral,Claudio R M.Emilio H G,et al.Analytical and numerical studies of noise-induced synchronization of chaotic systems[J].Chaos,2001,11(3):665-672.

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部