期刊文献+

用解线性方程组方法求三对角矩阵的逆

Find the Inverse Matrix of Tridiagonal Matrix by Sloving Systems of Linear Algebraic Equations
下载PDF
导出
摘要 根据三对角矩阵的特点 ,给出一种利用解线性方程组的方法求三对角矩阵的逆矩阵的算法 .该算法有两个优点 .第一 ,运算量小 .在整个计算过程中 ,只需进行较少次的乘除运算 .第二 ,节省内存 .除原始数据外 ,只定义三个一维数组 ,而不需任何二维数组 .数值实验表明 。 In this paper, an algorithm for finding the inverse matrix of tridiagonal matrix by sloving systems of linear algebraic equations is proposed. This algorithm is got according to the peculiarity of tridiagonal matrix. Our algorithm has two advantages. First, the amount of arithmetic operation is small. The number of multiplication and division operations is a few in whole calculation. Second, memory units of computer are saved. Only three one-dimension arrays are defined during the course of calculation, while no two-dimension arrays are needed. By valuation expeiment, our algorithm is showed has high precision.
出处 《北京建筑工程学院学报》 2004年第3期63-66,共4页 Journal of Beijing Institute of Civil Engineering and Architecture
基金 北京建筑工程学院博士启动基金资助项目 .
关键词 三对角矩阵 线性方程组 逆矩阵 tridiagonal matrix system of linear algebraic equations inverse matrix
  • 相关文献

参考文献3

  • 1徐树芳.矩阵计算的理论与方法[M].北京大学出版社,1995..
  • 2C. Brezinski. Projection methods for linear systems[J].Journal of Computational and Applied Mathematics 1977, 77: 35-51.
  • 3JH威尔金森著 石钟慈 邓健新译.代数特征值问题[M].北京:科学出版社,2001..

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部