期刊文献+

一类广泛kdv方程Cauchy问题的整体解及渐近性 被引量:1

Global Solution and Asymptotic Behavior of for A Class of Generalized kdv Equations
下载PDF
导出
摘要 本文讨论了一类广泛kdv方程(P)的Cauchy问题。对初值φ(x)及非线性项加以适当限制,在Sobolev空间框架下,用算子半群理论及不动点原理得到了整体解的存在唯一性和渐近性。 In this paper we discuss the following Cauchy problem for a class of generalized kdv equation: u_t+βD^3u+αD^2u+f(u)Du=0,(α<0),(x,t)∈R^1×R^1+t=0: u=φ(x), x∈R^1 Under the condition that the initial data φ(x) is small in the norm in Sobolev space H^(s+1)∩W^(s+y+2,1)(s≥N≥2 integer) and some restriction on non-linear term f(u) by using the semigroup theory and Banach fixed-point princple, we obtain the existence end uniqueness of Global solutions of the Cauchy problem in Sobolev space and asymptotic behavior of the solution as t→∞+.
作者 朝鲁
出处 《内蒙古大学学报(自然科学版)》 CAS CSCD 1989年第4期438-445,共8页 Journal of Inner Mongolia University:Natural Science Edition
关键词 广泛kdv方程 柯西问题 算子半群 Small initial data Fixed point Semigroup of operators Generalized kdv equations
  • 相关文献

同被引文献11

  • 1杨先林.BuNe~方程的精确解.动力学控制学报2006.4.(4):308-311.
  • 2Liu S S. Travelling wave solution forKDV -Burgers -Kuramoto equation 1999 (10).
  • 3Ablowitz M J. Clarkson P A Soliton. Nolinear Evolution Equations and Inverse Scatting 1991.
  • 4J. L. Bona, M. E. Schontek, Traveling Wave solutions to Korteweg - de Vries - Burgers equation, Proc. Roy. Soc. Edinburgh Sect. A 101 (1985) 207 - 226.
  • 5R. L. Pego, P. Smereka, M. I. Weinstein, Oscillatory instability of traveling waves for a KDV - Burgers equation, Phys. D67 ( 1993 )45 - 65.
  • 6Zhaosheng, Feng. Roger, Knobel. Traveling waves to a Burgers - Korteweg - de Vries - type equation with higher - order nonlinearities, J. Math Anal. Appl. 328 (2007) 1435 - 1450.
  • 7M. L. Gandarias. New potential symmetries for some evolution equations, Physica A 387 (2008)2234 -2242.
  • 8Bluman and S. C. Anco, Symmetry and Integration Methods for Differential Equations[ M ] , New York: Springer, 2002.
  • 9张红霞,郑丽霞,杜永胜.Benney方程的势对称和不变解[J].动力学与控制学报,2008,6(3):219-222. 被引量:7
  • 10特木尔朝鲁,张智勇.一类非线性波动方程的势对称分类[J].系统科学与数学,2009,29(3):389-411. 被引量:7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部