期刊文献+

热压辅助先驱体裂解制备的三维C_f/Si—O—C复合材料的微观结构与力学性能 被引量:2

Microstructures and mechanical properties of carbon fiber reinforced silicon oxycarbide composites fabricated via hot-pressing assisted pyrolysis of polysiloxane
下载PDF
导出
摘要 采用聚硅氧烷(PSO)先驱体浸渍裂解工艺制备出碳纤维三维编织物增强Si—O—C复合材料(3D-B C_(?)/Si—O—C)。研究发现,第一周期采用热压辅助裂解可以显著提高材料的力学性能与致密度。第一周期经1600℃、10MPa的条件热压裂解处理5min后,材料的弯曲强度和断裂韧性从未处理前的246.2MPa和9.4MPa·m^(1/2)提高到502MPa和23.7MPa·m^(1/2)。该材料的弯曲强度在真空中可以保持到1400℃。探讨了工艺参数对材料结构与力学性能的影响。高温裂解弱化界面结合同时提高纤维就位强度以及加压提高材料致密度是热压辅助裂解能提高材料力学性能的主要原因。 Three-dimensional braided carbon fiber reinforced silicon oxycarbide composites(3DB C_f/Si—O—C) were fabricated via polysiloxane infiltration and pyrolysis. It was found that the density and mechanical properties of 3D-B C_f/ Si—O—C could be increased remarkably if the first pyrolysis was assisted by hot-pressing. When the first pyrolysis was carried out at 1600℃ for 5min with a pressure of 10MPa, the flexural strength and fracture toughness of the resultant 3D-B C_f/ Si—O—C were increased from 246.2MPa and 9.4MPa·m^(1/2) to 502MPa and 23.7MPa·m^(1/2), which was attributed to the desirable interracial bonding, increased in-situ strength and density as the results of high temperature and pressure. In high temperature flexural tests, the strength of the composite at room temperature was maintained to 1400℃ under vacuum.
出处 《航空材料学报》 EI CAS CSCD 2004年第5期26-30,共5页 Journal of Aeronautical Materials
关键词 先驱体浸渍裂解 制备 先驱体 力学性能 弯曲强度 聚硅氧烷 复合材料 热压 致密度 材料结构 silicon oxycarbide ceramics continuous fiber reinforcement precursor infiltration and pyrolysis hot-pressing mechanical properties microstructures
  • 相关文献

参考文献12

  • 1马青松,陈朝辉,郑文伟,胡海峰.聚硅氧烷/二乙烯基苯的交联与裂解[J].国防科技大学学报,2001,23(5):40-44. 被引量:20
  • 2马青松,陈朝辉,郑文伟,胡海峰.不同交联剂对聚硅氧烷裂解产物的影响[J].航空材料学报,2002,22(4):36-39. 被引量:5
  • 3RICE R W.Effects of amount,location,and character of porosity on stiffness and strength of ceramic fiber composites via different processing[J].J Mater Sci,1999,34(12):2769-2772.
  • 4CURTIN W A.Theory of mechanical properties of ceramic-matrix composites[J].J Am Ceram Soc,1991,74(11):2837-2845.
  • 5STEIF P S,TROJNACKI A.Bend strength versus tensile strength of fiber-reinforced ceramics[J].J Am Ceram Soc,1994,77(1):221-229.
  • 6MUCALO M R,MILESTONE N B,BROWN I W M.NMR and X-ray diffraction studies of amorphous and crystallized pyrolysis residues from pre-ceramic polymers[J].J Mater Sci,1997,32(9):2433-2444.
  • 7LU C C,HEADINGER M H,MAJIDI A P,et al.Fabrication of a NicalonTM fiber/Si3N4-based ceramic-matrix composite by the polymer pyrolysis method[J].J Mater Sci,2000,35(24):6301-6308.
  • 8LY H Q,TAYLOR R,DAY R J.Carbon fiber-reinforced CMCs by PCS infiltration[J].J Mater Sci,2001,36(16):4027-4035.
  • 9NAKANO K,KAMIYA A,NISHINO Y,et al.Fabrication and characterization of three-dimensional carbon fiber reinforced silicon carbide and silicon nitride composites[J].J Am Ceram Soc,1995,78(10):2811-2814.
  • 10SUZUKI K,KUME S,NAKANO K.Fabrication of three-dimensional carbon fiber-reinforced Si3N4 composites by infiltration of slurry and organosilicon polymer[J].Jpn J Ceram Soc,1998,106(3):364-368.

二级参考文献6

共引文献20

同被引文献13

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部