期刊文献+

一类非线性波动方程混合问题解的爆破

Blow-up of the Solution to the Mixed Problem of Some Nonlinear Wave Equations
下载PDF
导出
摘要 依据势井理论,通过构造不稳定集,应用经过改进的凸性分析方法,简明地证明了一类非线性波动方程uu-△u=|u|γ-1u的混合问题解的爆破性质,即当初值属于不稳定集,初始能量为正但有适当上界时,解在L2范数意义下在有限时刻发生爆破. According to the potential well theory,the blowup property of the solution for the mixed problem of some nonlinear wave equations utt-Δu = |u|γ-1u is proved in a simple way by constructing unstable set and using the revised convexity method. Roughly speaking, when the initial data stay in the unstable set and the initial energy has properly positive upper bound, the solution will blow up in finite time under the L2 norm.
作者 张正萍
出处 《昆明理工大学学报(理工版)》 CAS 2004年第5期152-154,共3页 Journal of Kunming University of Science and Technology(Natural Science Edition)
基金 重庆工业高等专科学校资助课题(项目编号:Z0429)
关键词 波动方程 势井 凸形分析方法 爆破 wave equation potential well convexity method blow up
  • 相关文献

参考文献6

二级参考文献13

  • 1[2]Sattinger D H. On Global Solution of Nonlinear Hyperbolic Equations[J].Arch. Rat. Mech. Anal. 1968,(30):148-172.
  • 2[3]Payne L F,Sattinger D H. Saddle Points and Instability of Nonlinear Hyperbolic Equations [J]. IsRael Journal of Mathematics, 1975, (22): 273-303.
  • 3Segal L. Nonlinear partial differential equations in quantum field theory[J]. Proc. Symp. Appl. Math.A. M.S. 1965,17:210~226.
  • 4Jorgens K. Nonlinear Wave Equations [M]. University of Colorado, Department of Mathematics,1970.
  • 5Makhankov V. Dynamics of classical solutions in integrable systems [J]. Physics Reports, Sect C,1978,35:1~128.
  • 6Miranda M Milla Medeiros L A. On the existence of global solutions of a coupled nonlinear KleinGordon Equations [J]. Funkc. Ekvac. 1987,30:147~161.
  • 7Sattinger D H. On global solutions of nonlinear hyperbolic equaions [J]. Arch. Rational Mech. Anal.1968,30:148~172.
  • 8Tsutsumi M. On solutions of semilinear differential equations in a Hilbert space[J]. Math. Japon.1972,17:173~193.
  • 9郭柏灵.一类具磁场效应的非线性 Schrdinger方程组的初边值问题[J]应用数学学报,1987(02).
  • 10数学年刊第5卷A辑1984年总目录[J]数学年刊A辑(中文版),1984(06).

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部