期刊文献+

周期裂纹削弱的无限长板条的应力分析 被引量:2

Stress Analysis for an Infinite Strip Weakned by Periodic Cracks
下载PDF
导出
摘要  作出了周期裂纹削弱的无限长板条的应力分析· 假设这些裂纹均在水平位置,又板条承受y方向的拉伸力p· 此时边值问题归结为一个复杂混合边值问题· 发现,对此问题言,特征展开变分原理方法(eigenfunctionexpansionvariationalmethod,简称为EEVM)是非常有效的· 研究了裂纹端的应力强度因子和T_应力· 从拉伸力作用下的弹性变形考虑。 Stress analysis for an infinite strip weakened by periodic cracks is studied. The cracks were assumed in a horizontal position, and the strip is applied by tension 'p' in y-direction. The boundary value problem can be reduced into a complex mixed one. It is found that the EEVM ( eigenfunction expansion variational method) is efficient to solve the problem. The stress intensity factor at the crack tip and the T-stress were evaluated. From the deformation response under tension the cracked strip can be equivalent to an orthotropic strip without cracks. The elastic properties in the equivalent orthotropic strip were also investigated. Finally, numerical examples and results were given.
作者 陈宜周
出处 《应用数学和力学》 EI CSCD 北大核心 2004年第11期1189-1194,共6页 Applied Mathematics and Mechanics
基金 国家自然科学基金资助项目(10272053)
关键词 特征展开变分原理方法 周期裂纹 应力强度因子 T-应力 eigenfunction expansion variational method periodic crack stress intensity factor T-stress
  • 相关文献

参考文献14

  • 1Savruk M P. Two-dimensional Problems of Elasticity.for Body with Cracks [M]. Kiev: Nauka Dumka, 1981.
  • 2CHEN Yi-zhou. A survey of new integral equations in plane elasticity crack problem[J]. Engng Fract Mech, 1995,51(5) :387-394.
  • 3CHEN Yi-zhou , Lee K Y. An infinite plate weakened by periodic cracks[J]. J Appl Mech , 2002 , 69 ( 3 ) :552-555.
  • 4Isida M, Usijima N, Kishine N. Rectangular plate, strips and wide plates containing internal cracks under various boundary conditions[J]. Trans Japan Soc Mech Engrs, 1981,47:27-35.
  • 5Delameter W R, Herrmann G, Barnett D M. Weakening of elastic solid by a rectangular array of cracks[ J]. J Appl Mech, 1975,42(1) :74-80.
  • 6Parton V Z, Perlin P I. Integral Equations in Elasticity [M]. Moscow: Mir, 1982.
  • 7Benthem J P, Koiter W T. Asymptotic approximations to crack problems[A]. In: G C Sih Ed. Mechanics of Fracture [ C ]. 1973,1: 131 - 178.
  • 8Huang Y, Hu K X, Chandra A. Stiffness evaluation for solids containing dilute distributions of inclusions and microcracks[J]. J Appl Mech, 1995,62( 1 ) :71-77.
  • 9Kachanov M. Elastic solids with many cracks and related problems [A]. In: J W Hutchinson, T Wu Eds . Advances in Applied Mechanics [ C]. 1993,30:259-445.
  • 10CHEN Yi-zhou. An investigation of the stress intensity factor for a finite internally cracked plate by using variational method [J]. Engng Fract Mech, 1983,17 (5): 387-394.

同被引文献19

  • 1肖俊华,蒋持平.周期张开型平行裂纹问题研究[J].力学学报,2007,39(2):278-282. 被引量:6
  • 2Pak YE. Goloubeva E. Electroelastic properties of cracked piezoelectric materials under longitudinal shear. Mechanics of Materials, 1996, 24(4): 287-303
  • 3Tong ZH, Jiang CP, Lo SH, et al. A closed form solution to the antiplane problem of doubly periodic cracks of unequal size in piezoelectric materials. Mechanics of Materials, 2005, 2006, 38(4): 269-286
  • 4Hao TH. An exact elastic-perfect plastic solution of antiplane parallel periodical crack field. Engineering Fracture Mechanics, 1987, 26(1): 59-63
  • 5Hao TH. An exact solution of the anti-plane parallel periodical transverse crack field in a bimaterial infinite plane. International Journal of Fracture, 1991, 47(3): R49-R51
  • 6Sanada K, Shindo Y, Ueda S. Stress intensity factors for glass-fiber reinforced plastics with an infinite row of parallel cracks at low temperatures. Theoretical and Applied Fracture Mechanics, 1998, 28(3): 183-196
  • 7Delameter WR, Herrman G, Barnett DM. Weakening of an elastic solid by a rectangular array of cracks. ASME Journal of Applied Mechanics, 1975, 42(1): 74-80
  • 8Karihaloo BL. Fracture of solids containing arrays of cracks. Engineering Fracture Mechanics, 1979, 12(1): 49-77
  • 9Chen YZ, Lin XY. Periodic group crack problems in an infinite plate. International Journal of Solids and Structure,2005, 42(9-10): 2837-2850
  • 10中国航圣研究院.应力强度因子手册.北京:科学出版社,1993

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部