期刊文献+

PS类Bent函数的一种构造方法 被引量:7

One Method for Constructing Bent Functions of Class PS
下载PDF
导出
摘要 PS类bent函数类是所有 2 (n/2 ) -1或 2 (n/2 ) -1+1个Fn2 的“不交的”n2 维子空间的指示函数的模 2和所组成的函数的集合 .这些函数具有很好的代数结构并在密码学中有很多应用 .如何来刻画PSbent函数的代数范式一直是公开的难题 .构造PS类bent函数关键在于如何将Fn2 划分为 2 n/2 +1个 n2 维子空间 .本文给出一种划分的方法 ,从而构造出PS类bent函数 ,并给出了对应的代数范式 . The class of PS bent functions is one interesting class of bent functions, they have good algebraic structure and have many applications in cryptography. They are also useful for studying the general structure of bent functions. Unfortunately, the construction of PS bent functions is theoretic, it is still an open problem to characterize the algebraic normal forms of PS bent functions. We study the properties of such functions, and one method to construct PS bent functions and the corresponding algebraic normal forms are provided.
出处 《电子学报》 EI CAS CSCD 北大核心 2004年第10期1649-1653,共5页 Acta Electronica Sinica
基金 国家自然科学基金 (No .60 3730 59 60 1 72 0 60 ) 教育部跨世纪人材培养基金 教育部优秀教师基金
关键词 PS类Bent函数 代数范式 Galois域 线性化多项式 Algebra Cryptography Linear equations Polynomials
  • 相关文献

参考文献9

  • 1Dillon J F.Elementary hadamard difference sets[D].Ph D Thesis,University of Maryland,1974.
  • 2Rothaus O S.On bent functions[J].Journal of Combinatorics Theory,Series A,1976,20:300-305.
  • 3Meier W,O Staffelbach.Nonlinearity criteria for Cryptographic functions[A].in Advances in Cryptology-EUROCRYPTO'89(Lecture Notes in Computer Science,434)[C].Berlin,Germay:Springer-Verlag,1992.549-562.
  • 4F J MacWilliams,N J A Sloane.The Theory of Error Correcting Codes[M].Amsterdam,Netherlands:North Holland,1977.
  • 5Olsen J D,Scholtz R A,L R Welch.Bent function sequence[J].IEEE Transactions on Information Theory,1982,28(6):858-864.
  • 6Assmus E F,J D Key.Designs and Their Codes[M].Cambridge University Press,1992.
  • 7McFarland R L.A family of noncyclic difference sets[J].Journal of Combinatorics Theory,Series A,1973,15:1-10.
  • 8R A Brauldi.Introductory Combinatorics[M].Elsevier North-Holland,Inc.1977.
  • 9R Lidl,H Niederreiter.Finite Fields.Encyclopedia of Mathematics and Its Applications[M].vol.20,Addison-Wesley Publishing Company,1983.

同被引文献53

  • 1WENG GuoBiao,FENG RongQuan,QIU WeiSheng,ZHENG ZhiMing.The ranks of Maiorana-McFarland bent functions[J].Science China Mathematics,2008,51(9):1726-1731. 被引量:1
  • 2孟庆树,张焕国,王张宜,覃中平,彭文灵.Bent函数的演化设计[J].电子学报,2004,32(11):1901-1903. 被引量:16
  • 3张文英,武传坤,于静之.密码学中布尔函数的零化子[J].电子学报,2006,34(1):51-54. 被引量:16
  • 4N. T. Courtois, W. Meier. Algebraic attacks on stream ciphers with linear feedback [ A ]. Advances in Cryptology-EUROCRYPT 2003 [ C ]. LNCS 2656, Berlin: Springer-Verlag, 2003, pp. 346 - 359.
  • 5W. Meier, E. Pasalic, and C. Carlet. Algebraic attacks and decomposition of Boolean functions[ A]. In Advances in Cryptology-EUROCRYPT, 2004[ C]. LNCS 3027, Berlin: SpringerVerlag, 2004, pp. 474 - 491.
  • 6C. Carlet, D. K. Dalai, K. C. Gupta, and S. Maitra. Algebraic immunity for cryptographically significant Boolean functions: analysis and comtruction [ J ].IEEE. Trans. Inform. Theory, 2006,52(7) :3105 - 3121.
  • 7O. S. Rothaus. On bent functions [ J ]. Combin. Theory Ser A, 1976,20:300 - 305.
  • 8T. Siegenthaler. Correlation-immunity of nonlinear combining functions for cryptographic applications [ J ].IEEE Trans. Inform. Theory, 1984,30(5) :776 - 780.
  • 9G. Xiao, J. Massey. A spectral characterization of correlationimmune functions [ J]. IEEE Trans Inform. Theory, 1988,34 (3) :569 - 571.
  • 10Rothaus O S. On Bent Function[J]. Journal of Combinatorial Theory: Series A, 1976, 20(3): 300-305.

引证文献7

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部