期刊文献+

高等学校设学布点模糊多因素决策方法 被引量:2

Fuzzy multifactor decision making method on setting colleges
下载PDF
导出
摘要 高等学校设学评判涉及主观评判因素和客观评判因素 ,利用模糊理论 ,定义了主观评判因素三角模糊数 ,综合不同专家意见得到了项目主观因素平均模糊评判向量 ,进而建立了项目混合综合评判矩阵 .基于Bass和Kwak ernaak确定的模糊优先原则 ,提出了三角模糊向量“L 归一法” ,证明了“L 归一法”的合理性 ,实现了对项目混合综合评判矩阵的归一化 .利用层次分析法或模糊一致判断法得到项目评判因素相对重要性平均权值向量 ,计算出了项目模糊综合评判值 .利用Yager方法将项目模糊综合评判效用值实数化 ,建立了项目最优决策整数线性规划模型 ,通过求解模型可得到高等学校设学布点最优决策结果 . Evaluation on college setting projects includes subjective and objective factors. Using fuzzy theory, triangular fuzzy numbers are defined to evaluate the subjective factors, the averaged fuzzy evaluation vectors of subjective factors can be obtained by synthesizing opinions from all experts, one can get a mixed synthetic evaluation matrix afterwards. Based on the fuzzy prior principle from Bass and Kwakernaak, a new “L-unitary method' of triangular fuzzy vectors is presented and it's rationality is proved, the unitary mixed synthetic evaluation matrix can be gotten according to the new method. Using Analytic Hierarchy Process (AHP) or Fuzzy Consistent Evaluation Method (FCEM), the relative importance average weighted vector for all evaluation factors is computed and the fuzzy comprehensive evaluation value is given. An integer linear programming model for making optimal decision is built by converting the fuzzy comprehensive evaluation value into real one based on Yager method. By solving this model, one can get the optimal decision for college setting.
作者 李霞 刘保东
出处 《山东大学学报(工学版)》 CAS 2004年第5期93-98,共6页 Journal of Shandong University(Engineering Science)
关键词 教育 设学 L-归一法 模糊多因素 决策 education college setting L-unitary method fuzzy multiple factors decision making
  • 相关文献

参考文献8

  • 1BRANS JP, VINCKE PH, MARESCHAL B. How to select and how to rank projects: The PROMETHEE method[J]. European Journal of Operational Research, 1986, 24:228-238.
  • 2BUCKLEY J J. Ranking alternatives using fuzzy numbers[J]. Fuzzy Sets and Systems, 1985, 15:21-31.
  • 3CARLSSON C, FULLER R. Fuzzy multiple criteria decision making: Recent developments[J]. Fuzzy Sets and Systems, 1996,78:139-153.
  • 4ANAND P R, NAGESH D K. Ranking alternatives with fuzzy weights using maximizing set and minimizing set[J] . Fuzzy Sets and Systems, 1999,105: 365-375.
  • 5宋业新,陈绵云,吴晓平.模糊多目标有约束投资项目选择建模[J].系统工程理论与实践,2002,22(5):115-119. 被引量:11
  • 6BASS S M, KWAKERNAAK H. Rating and ranking of multiple aspect alternatives using fuzzy sets[J]. Automatica, 1977, 13:47-58.
  • 7LIANG GIN-SHUH. Theory and methodology fuzzy MCDM based on ideal and anti-ideal concepts[J]. European Journal of Operational Research, 1999,112:682-691.
  • 8李霞,刘保东.高等学校综合实力模糊一致排名方法[J].中国管理科学,2003,11(z1):56-60. 被引量:2

二级参考文献5

共引文献11

同被引文献13

  • 1李永,胡向红,乔箭.改进的模糊层次分析法[J].西北大学学报(自然科学版),2005,35(1):11-12. 被引量:182
  • 2陈丽贞.高校科研机构评估体系研究[J].福州大学学报(哲学社会科学版),2005,19(3):95-99. 被引量:11
  • 3张红,易容容,徐学军.基于模糊层次分析法的企业核心能力评价[J].科技管理研究,2006,26(2):73-75. 被引量:21
  • 4陈友华,赵民.城市规划概论[M].上海:上海科学技术文献出版社.2006.
  • 5CARLSSON C,FULLER R. Fuzzy multiple criteria decisicn making: Recent developments[ J ]. Fuzzy Sets and Systems, 1996 (78) : 139-153.
  • 6[3]贺建军.我国科技评估制度的经济学分析[D].福州大学硕士研究生学位论文,2005.
  • 7[13]Zadeh,L.A.,Information and Control[J].Fuzzy Set,1965,8:338-353.
  • 8[14]Satty,T.IJ.,The Analytic Hierarchy Process[M].McGrawHill,New York,1980.
  • 9[15]Dubois,D.and H.,Prade,Fuzzy Sets and Systems:Theory andApplications[M].Academic Press,New York,1980.
  • 10[16]Bellman,R.and L.A.,Zadeh,Decision Making in a Fuzzv Environment[J]Management Science,1970,17B(4):141-164.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部