摘要
高等学校设学评判涉及主观评判因素和客观评判因素 ,利用模糊理论 ,定义了主观评判因素三角模糊数 ,综合不同专家意见得到了项目主观因素平均模糊评判向量 ,进而建立了项目混合综合评判矩阵 .基于Bass和Kwak ernaak确定的模糊优先原则 ,提出了三角模糊向量“L 归一法” ,证明了“L 归一法”的合理性 ,实现了对项目混合综合评判矩阵的归一化 .利用层次分析法或模糊一致判断法得到项目评判因素相对重要性平均权值向量 ,计算出了项目模糊综合评判值 .利用Yager方法将项目模糊综合评判效用值实数化 ,建立了项目最优决策整数线性规划模型 ,通过求解模型可得到高等学校设学布点最优决策结果 .
Evaluation on college setting projects includes subjective and objective factors. Using fuzzy theory, triangular fuzzy numbers are defined to evaluate the subjective factors, the averaged fuzzy evaluation vectors of subjective factors can be obtained by synthesizing opinions from all experts, one can get a mixed synthetic evaluation matrix afterwards. Based on the fuzzy prior principle from Bass and Kwakernaak, a new “L-unitary method' of triangular fuzzy vectors is presented and it's rationality is proved, the unitary mixed synthetic evaluation matrix can be gotten according to the new method. Using Analytic Hierarchy Process (AHP) or Fuzzy Consistent Evaluation Method (FCEM), the relative importance average weighted vector for all evaluation factors is computed and the fuzzy comprehensive evaluation value is given. An integer linear programming model for making optimal decision is built by converting the fuzzy comprehensive evaluation value into real one based on Yager method. By solving this model, one can get the optimal decision for college setting.
出处
《山东大学学报(工学版)》
CAS
2004年第5期93-98,共6页
Journal of Shandong University(Engineering Science)
关键词
教育
设学
L-归一法
模糊多因素
决策
education
college setting
L-unitary method
fuzzy multiple factors
decision making