期刊文献+

高效FP-TREE创建算法 被引量:4

High Efficiency FP-tree Creating Algorithm
下载PDF
导出
摘要 如何从大型数据库中挖掘关联规则是数据挖掘的一个重要的问题。FP-growth是一个著名的不产生候选集的高效频繁模式挖掘算法,它使用专门的数据结构FP-tree。为了进一步提高FP-grown算法效率,提出一个新的并行算法PFPTC,可以并发地创建子FP-tree,以及一个FP-tree合并算法称作FP-merge,可以将两个FP-tree合并为一个。 Mining association rules from large databases is an important problem in data mining. FP-growth is a famous algorithm to mine frequent patterns and it is non-candidate generation algorithm using a special structure FPtree. In order to enhance the efficiency of FP-grown algorithm,propose a novel parallel algorithm PFPTC to create sub FP-trees concurrently and a FP-tree merging algorithm called FP-merge which can merge two FP-trees into one FP-tree.
作者 邱勇 兰永杰
出处 《计算机科学》 CSCD 北大核心 2004年第10期98-100,共3页 Computer Science
基金 This paper is supported by Shandong Physical Science Foundation(Y2002G08)
关键词 挖掘算法 候选集 频繁模式 关联规则 合并算法 大型数据库 算法效率 FP 创建 并发 Data mining,Association rules,ParaUel algorithm,FP-tree
  • 相关文献

参考文献6

  • 1Agrawal R, Srikant R. Fast algorithms for mining association rules. In VLDB'94,487-499
  • 2Savasere A, Omiecinski E, Navathe S M. An efficient algorithm for mining association rules. In: Proc. of the 21st Intl. Conf on VLDB. Zurich, 1995.432-444
  • 3Han J, Fu Y. Discovery of multiple-level association rules from large databases. In: Proc. of the 21st Intl. Conf. on VLDB.Zurich, 1995. 420-431
  • 4Houtsma M, Swami A. Set-Oriented mining for association rules in relational databases. In: Yu PS, ed. Proc. of the Intl. Conf.on Data Engineering. Los Alamitos: IEEE Computer SocietyPress, 1995. 25-33
  • 5Zaki M J,Hsiao C J. CHARM: An efficient algorithm for closed itemset mining. In:Proc. SIAM Int. Conf. Data Mining, Arlington, 2002. 457-473
  • 6Han J,Pei J,Yin Y. Mining Frequent Patterns without Candidate Generation. Kluwer Academic Publishers, Data Mining and Knowledge Discovery, 2004.53- 87

同被引文献24

  • 1颜跃进,李舟军,陈火旺.基于FP-Tree有效挖掘最大频繁项集[J].软件学报,2005,16(2):215-222. 被引量:68
  • 2Han Jiawei,Kamber Micheline,范明,孟小峰,等译.数据挖掘概念与技术[M].北京:机械工业出版社,2007:424-479.
  • 3Agrawal R,Imielinski T,Swami A.Mining association rulesbetween sets of items in large database [ C]//Proc.of 1993ACM SIGMOD Conf.on Management of Data.WashingtonDC:ACM Press,1993:207-216.
  • 4Agrawal R,Srikant R.Fast Algorithms for Mining AssociationRules[ C]//Proc.of the 20th Inti Conference on Very LargeDatabases.Santiago,Chile : [ s.n.] ,1994.
  • 5Han J,Pei J,Yin Y.Mining frequent patterns without candi-date generation [ C]//Proc.of 2000 ACM SIGMOD Int' 1Conf.on Management of Data.Dallas,TX,New York: ACMPress,2000:1-12.
  • 6Agrawal R,Shafer J.Parallel mining of association rules[ J].IEEE Trans,on Knowledge and Data Engineering,1996,8(6):962-969.
  • 7Li Haoyuan,Wang Yi,Zhang Dong,et al.PFP: Parallel FP-Growth for Query Recommendation [ C] //Proceedings of the2008 ACM Conference on Recommender Systems.Lousanne,Switzerland: [s.n.] ,2008: 125-137.
  • 8Zhou L,Zhong Z,Chang J,et al.Balanced Parallel FP-Growthwith Map-Reduce [ C]//Proceedings of 2010 IEEE YouthComference on Information Computing and Telecommunica-tions(YC-ICT).Beijing: [ s.n.] ,2010:243-246.
  • 9Han Jiawei, Pei Jian, Yin Yiwen. Mining Frequent Patterns Without Candidate Generation [ C ]//Proceedings of the ACM SIGMOD Interna- tional Conference on Management of Data. Dallas, Texas, USA: ACM Press, 2000.
  • 10Liu Li, Li E, Zhang Yimin, et al. Optimization of Frequent hemset Min- ing on Multiple-core Processor [ C ]//Proc. of the 33rd International Conference on Very Large Data Bases. Vienna, Austria:VLDB Endow- ment ,2007 : 1275 - 1285.

引证文献4

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部