期刊文献+

从确信因子模型到Bayes网络 被引量:2

From Certainty Factor Model to Bayesian Network
下载PDF
导出
摘要 本文研究确信因子模型与Bayes网络之间的区别与联系。首先讨论确信因子模型理论基础的局限性,证明确信因子模型中蕴含着与简单Bayes模型一样的条件独立性假设;然后探究Bayes网络中对应于确信因子模型的若干功能,提出Bayes网络推理中条件对推理结论的影响程度与作用方向的概念、分析方法和计算公式,证明Noisy-OR模型的概率推理与确信因子的推理的等价性;最后从知识的表示、推理、获取等三个方面讨论Bayes网络相对于确信因子模型的比较优势。本文的研究表明Bayes网络不仅具备确信因子模型的主要功能,而且可以突破确信因子的局限性。它有望取代确信因子模型,成为基于概率的智能信息处理模型中的一种主流模型。 In this paper, the relations and differences between certainty factor model and Bayesian Network are researched. Firstly, the limitation of the theoretical basis of certainty factor model is discussed; it is proved that the certainty factor model implies a conditional independence hypothesis same as the simple Bayesian model implies. Then, some functions of Bayesian Network, which correspond to certainty factor model, are explored. The concepts, analysis approach, and computing formula of condition's influence degree and effect direction to the inference conclusion in Bayesian network are presented, and it is also proved that the equivalence of the probabilistic inference between the Noisy-OR model and certainty factor model. Finally, the superiority of Bayesian network to certainty factor model is discussed in the aspects of representation, inference, and acquire of the knowledge. Our conclusion is that the Bayesian network not only has the main function of the certainty factor model, but also can break through some limitation of this model, so the Bayesian network can be a main trend probabilistic model in intelligent information process instead of the certainty factor model eventually.
出处 《计算机科学》 CSCD 北大核心 2004年第10期182-188,共7页 Computer Science
基金 国家自然科学基金(No.60175011 60375011) 安徽省自然科学基金(No.03042207 03042305)
关键词 因子模型 务件 比较优势 局限性 Bayes模型 突破 知识 BAYES网络 智能信息处理 条件独立性 Bayesian network, Certainty factor model, Conditional independency, Modularity of rule, Uncertainty inference
  • 相关文献

参考文献21

  • 1Buchanan B G,Shortliffe E H,et al. Rule -based Expert systems:The MYCIN Experiments of the Stanford Heuristic Programming Project. Addison-Wesley, Reading, MA, 1984
  • 2Buxton H,Gong S. Visual Surveillance in a Dynamic and Uncertain World. Artificial Intelligence, 1995,78: 431-459
  • 3Cooper G F. The computational complexity of probabilistic inference using Bayesian belief networks. , AI, 1990,42: 393-405
  • 4Chickering D, Heckerman D, Meek C. A Bayesian Approach to Learning Bayesian Networks with Local Structure. In: Proc. of Thirteenth Conf. on Uncertainty in Artificial Intelligence, Providence, RI, pages 80-89. Morgan Kaufmann, Aug. 1997. 80~89
  • 5Castillo E, Gutiérrez J M,Hadi A S. Expert Systems and Probabilistic Network Models, New York: Springer-Verlag. Press,1997
  • 6Duda R, Hart P, Nilsson N. Subject Bayesian Methods for rulebased inference system. In:proc of National Computer Conf. Vol.45,AFIPS, 1976. 1075-1082
  • 7Giarratano J, Riley G. Expert Systems Principles and Programming. PWS Publish Company, 1998
  • 8Heckerman D. Probabilistic interpretations for MYCIN's Certainty factors. In: Kanal L N, Lemmer J F,eds. Uncertainty in Artificial Intelligence, North-Holland, Amsterdam,1986. 298-312
  • 9Heckerman D, Geiger D, Chickering D. Learning Bayesian networks: The Combination of Knowledge and Statistical Data. Machine Learning,1995, 20:197-243
  • 10Heckerman D, Breese J S. Causal independence for probabilistic assessment and inference using Bayesian networks. IEEE trans.on Systems,Man and Cybernetics, 1996, 26 (6): 826-831

同被引文献11

  • 1尹云飞,钟智,张师超.软件科学中Halstead模型的改进[J].计算机应用,2004,24(10):130-132. 被引量:4
  • 2MUSA J D. Sofiwarereliability measurement, Prediction, application[M]. New York, NY, USA: McGraw-Hill, 1987.
  • 3KLEINRICK L. Queuing systems, Volume 1 : Theory [M].New York, NY, USA: John Wiley & Sons, 1975.
  • 4BNT软件包[EB/OL].http://bnt.sourceforge.net/
  • 5FENTON N E, NElL M, MARSH W, et al. Predicting software defects in varying development lifecycles using Bayesian nets[J]. Information and Software Technology, 2007,49( 1 ) :32-43.
  • 6BAI C G, HU Q P, XIE M, et al. Software failure prediction based on a Markov Bayesian network model [ J ]. The Journal of Systems and Software, 2005, 74 (3) : 275-282.
  • 7FAN Chin Feng, YU Yuan Chang. BBN-based software project risk management [J]. Journal of Systems Software, 2004,73 (2) : 193-203.
  • 8STAMELOS I, ANGELIS L, DIMOU P, et al. On the use of Bayesian belief networks for the prediction of software productivity [ J]. Information and Software Techniques, 2003, 45(1):51-60.
  • 9慕春棣,tsinghua.edu.cn,戴剑彬,叶俊.用于数据挖掘的贝叶斯网络[J].软件学报,2000,11(5):660-666. 被引量:100
  • 10王玮,陈恩红,王煦法.基于贝叶斯方法的知识发现[J].小型微型计算机系统,2000,21(7):703-705. 被引量:16

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部