期刊文献+

Boosting理论基础 被引量:5

The Theory Base of Boosting
下载PDF
导出
摘要 Boosting是提高学习算法准确度的有效方法。本文主要介绍了Boosting的问题框架PAC模型、与Boosting相似并有助于AdaBoost研完的在线分配模型和AdaBoost算法,并对AdaBoost算法的参数和弱假设选择等进行了分析。 Boosting is an effective method for improving thd accuracy of any given learning algorithm,which generate multiple versions of a hypothesis and combine them to create an aggregate hypothesis,This paper first introduces the problem framework of Boostinig:PAC learning model,and Online prediction model,a similar algorithm with boosting but with great help for boosting's research. Besides,if also introduces and analysis the algorithm of adaboost itself,as well as its parameters and week hypotheses'selection.
出处 《计算机科学》 CSCD 北大核心 2004年第10期11-14,共4页 Computer Science
基金 重庆市教委科技项目(编号:031104)资助 中国国家重点基础研究发展项目"973项目"(编号:G1998030414)资助
关键词 ADABOOST算法 学习算法 在线 分配模型 框架 参数 PAC 有效方法 问题 分析 PAC learning model,Online prediction model,Algorithm analysis
  • 相关文献

参考文献13

  • 1Schapire R E. The strength of weak learnability. Machine Learning, 1990,5(2) :197-227
  • 2Kearns M,Valiant L G. Learning Boolean Formulae or Factoring: [Technical Report TR- 1488]. Cambridge, MA: Havard University Aiken Computation Laboratory, 1988
  • 3Kearns M, Valiant L G. Crytographic Limitation on Learning Boolean Formulae and Finite Automata. In: Proc. of the 21st annual ACM Symposium on Theory of Computing,New York. NY:ACM press, 1989. 433-444
  • 4Valiant L G. A theory of the learnable. Communications of the ACM,1984, 27(11):1134-1142
  • 5Kearns M J,Vazirani L G. Learning Boolean formulae or finite automata is as hard as factoring: [Technical Report TR-14-88].Harvard University Aiken Computation Laboratory, Aug. 1988
  • 6Kearns M J,Vazirani L G. Cryptographic limitations on learning Boolean formulae and finite automata. Journal of the Association for Computing Machinery, 1994,41(1): 67-95
  • 7Freund Y. Boosting a weak learning algorithm by majority. In formation and computation, 1995, 141 (2): 256 -285
  • 8Freund Y,Schapire R E. A decision-theoretic generalization of on line learning and an application to boosting. Journal of Computer and System Science,1997,55(1) :119-139
  • 9Dietterich T G,Bakiri G. Solving multiclass learning problems via error-correcting output codes. Journal of Artificial Intelligence Research,1995, 2:263-286
  • 10Schapire R E,Singer Y. Using output codes to boost multiclass learning problems. In: Machine Learning: Proc. of the Fourteenth Intl. Conf. 1997. 313-321

同被引文献43

  • 1刘安斐,窦晓晶,杨华.基于Adaboost算法的K-means遥感影像分类算法[J].北京电子科技学院学报,2007,15(4):70-73. 被引量:3
  • 2郑峰,杨新.基于Adaboost算法的人脸检测[J].计算机仿真,2005,22(9):167-169. 被引量:14
  • 3罗四维,赵连伟.基于谱图理论的流形学习算法[J].计算机研究与发展,2006,43(7):1173-1179. 被引量:76
  • 4Cloude S. R, Pottier E. An Entropy Based Classification Scheme for Land Application of Polarimetric SAR [ J ]. IEEE Transactions on Geoscience and Remote Sensing, 1997,35( 1 ) : 68-78.
  • 5Freund Y, Schapire R. E. A Decision Theoretic Generalization of on-line Learning and an Application to Boosting [J]. Journal of Computer and System Science, 1997,55 (1): 119-139.
  • 6Boyarshinov V, Magdon-Ismail M. Efficient Optimal Linear Boosting of a Pair of Classifiers [ J ]. IEEE Transactions on neural networks,2007,18 (2) : 317- 328.
  • 7Sun Yijun, Liu Zhipeng,Todorovic Sinisa, Li Jian. Adaptive Boosting for SAR Automatic Target Recognition[ J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(1) : 112-125.
  • 8She Xiaoli, Yang Jian, Zhang Weijie. The Boosting Algorithm with Application to Polarimetric SAR Image Classification [ C ]. Synthetic Aperture Radar, APSAR 2007, Nov. 2007,1 : 779-783.
  • 9于仕琪,刘瑞祯.学习OpenCV(中文版)[M].北京:清华大学出版社,2009.
  • 10罗四维,赵连伟.流形学习研究综述[EB/OL].[2005-12-12]http://www.paper.edu.cn.

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部