摘要
Boosting是提高学习算法准确度的有效方法。本文主要介绍了Boosting的问题框架PAC模型、与Boosting相似并有助于AdaBoost研完的在线分配模型和AdaBoost算法,并对AdaBoost算法的参数和弱假设选择等进行了分析。
Boosting is an effective method for improving thd accuracy of any given learning algorithm,which generate multiple versions of a hypothesis and combine them to create an aggregate hypothesis,This paper first introduces the problem framework of Boostinig:PAC learning model,and Online prediction model,a similar algorithm with boosting but with great help for boosting's research. Besides,if also introduces and analysis the algorithm of adaboost itself,as well as its parameters and week hypotheses'selection.
出处
《计算机科学》
CSCD
北大核心
2004年第10期11-14,共4页
Computer Science
基金
重庆市教委科技项目(编号:031104)资助
中国国家重点基础研究发展项目"973项目"(编号:G1998030414)资助