期刊文献+

XML数据关联挖掘技术

The Technology of Mining Association Rules in XML Data
下载PDF
导出
摘要 XML数据的灵活性、自描述性以及可扩展性使得越来越多的领域开始采用它作为主要的存储格式和传输媒介,因而产生了大量的XML数据,积累了丰富的信息。但是XML表述的数据特点比较复杂,这就为数据挖掘人员提出了新的挑战。文章从表述XML数据的模型开始介绍,按照模型对XML关联挖掘算法进行分类,介绍了主要的一些算法,并探讨了目前存在的问题和主要的发展方向。 The flexibility, self-description and expansibility of XML data has made it develop dramatically and become a major standard for storing and exchanging information. The increasing amount of available XML data and complexi-ty of characteristics of XML data pose new challenges to the data mining community. This paper first introduces the data model presenting XML data, then describes the main algorithm of Mining XML Association Rules classified data model, and finally exolores the main oroblem now and develoo direction future.
出处 《计算机科学》 CSCD 北大核心 2004年第10期23-27,共5页 Computer Science
基金 国家863项目(2002AA412020) 江苏省自然科学基金(NO.BK200204)的资助
关键词 XML数据 挖掘算法 自描述性 挖掘技术 传输媒介 数据挖掘 可扩展性 表述 文章 存储格式 Native XML data, Data mining, XML database, Semi-structured model
  • 相关文献

参考文献19

  • 1Abiteboul S, et al. The lorel query language for semi-structured data:[Technical report]. Dept. of Computer Science, Stanford University, 1996. Available by anonymous ftp to db. stanford.edu
  • 2Goldman R,McHugh J,Widom J. From Semi-structured Data to XML: Migrating the Lore Data Model and Query Language.http:∥citeseer. nj. nec. com/cache/papers/cs/24625/http: zSzzSzxml. coverpages. orgzSzLore-WebDB99. pdf/goldman99from.pdf.
  • 3Maruyama K,Uehara K. Mining Association Rules from Semistructured Data. www. ai. cs. scitec. kobe-u. ac. jp/report/maru199912. pdf
  • 4Papakonstantinou Y,Garcia-Molina H,Widom J. Object exchange across heterogeneous information sources. In: Proc. of the Eleventh Intl. Conf. on Data Engineering,Taipei, Taiwan, Mar.1995. 251-260
  • 5Braga D,Campi A,Klemettinen M,Lanzi P L. Mining association rules from xml data. In:Proc. of the 41h Intl. Conf. on Data Warehousing and knowledge discovery(DaWak 2002)Sep. AixenProvence, France, 2002. accepted.
  • 6Braga D, et al. Discovering interesting information in xml data with association rules:[Technical Report 2002-15]. Dipartimento di Elettronica e Informazione-Politecnico di Milano, 2002
  • 7Bragal D,et al. A Tool for Extracting XML Association Rules. In:Proc. of the 14th IEEE Intl. Conf. on Tools with Artificial Intelligence(ICTAI'02)2002
  • 8Meo R,Psaila G,Ceri S. A new sql-like operator for mining association rules. In VLDB'96,Mumbai(Bombay), India, 1996. 122-133
  • 9Nestorov S,Ullman J, Wiener J,Chawathe S. Representative Objects: Concise Representations of Semi-structured Hierarchal Data. In:Proc. of 13th Intl. Conf. on Data Engineering, 1997.79-90
  • 10Wang K,Liu H. Schema discovery for semi-structured data. In:Intl. Conf. on Knowledge Discovery and Data Mining, Newport Beach,Aug. 1997. 271-274

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部