期刊文献+

ROLAP环境下数据立方体的计算框架

A Framework of Data Cube Computation in ROLAP
下载PDF
导出
摘要 数据立方体计算是联机分析中一项重要的技术。研完工作者提出了多种具有不同存储空间和查询相应时间的数据立方体,每种数据立方体有独自的生成算法。本文分析了使用关系系统作为存储结构的一般数据立方体、部分数据立方体和浓缩数据立方体的原理,提出用合作伙伴的概念统一这三类数据立方体的思想,并设计了一个算法TCUBE用于生成这些数据立方体。我们使用了一个实际数据集测试了TCUBE的性能,结果表明它生成浓缩数据立方体的速度要快于原有的算法。 The computation of data cube is one important technique in On-Line Analytical Processing. Researchers have proposed many kinds of data cubes that are of different query response time and occupy varying size of space. Any more, each data cube has its own constructing algorithm. This paper analyzes the principles of normal data cube, partial data cube and condensed data cube that put their tuples into relation system, proposes to use the idea of fellowship to unify these kinds of data cube, and designs an algorithm TCUBE to obtain them. We also conduct an experiment using a real data set to verify the performance of TCUBE. The results show that TCUBE outperforms the original algorithms used to produce condensed cube.
出处 《计算机科学》 CSCD 北大核心 2004年第10期93-95,共3页 Computer Science
  • 相关文献

参考文献10

  • 1Gray J, Bosworth A, Layman A, et al. Data Cube:A Relational Aggregation Operator Generalizing Group-By, Cross-Tab, and Sub-Totals. In: S. Y. W. Su,ed. Proc. of the Twelfth Intl. Conf. on Data Engineering. New Orleans: IEEE Computer Society, 1996. 152~159
  • 2Harinarayan V, Rajaraman A, Ullman J D. Implementing Data Cubes Efficiently. In: H. V. Jagadish, Inderpal Singh Mumick,eds. Proc. ACM SIGMOD Intl. Conf. on Management of Data.Montreal: ACM Press, 1996. 205-216
  • 3Shukla A, Deshpande P M, Naughton J F. Materialized View Selection for Multidimensional Datasets. In: A. Gupta, O.Shmueli, J. Widom,eds. Proc. of 24rd Intl. Conf. on Very Large Data Base. New York City: Morgan Kaufmann, 1998. 488~499
  • 4Wang W, Lu H, Feng J, Yu J X. Condensed Cube: An Effective Approach to Reducing Data Cube Size. In: Proc. of the 18th Intl.Conf. on Data Engineering. San Jose: IEEE Computer Society,2002. 155-165
  • 5Lakshmanan L V S, Pei Jian, Han Jiawei. Quotient Cube: How to Summarize the Semantics of a Data Cube. In: Proc. of 23rd Intl. Conf. on Very Large Data Bases. Hong Kong: Morgan Kaufmann, 2002. 778-789
  • 6Lakshmanan L V S, Pei Jian, Zhao Yan. QC-Trees: An Efficient Summary Structure for Semantic OLAP. In: Alon Y. Halevy,Zachary G. Ives, AnHai Doan,eds. Proc. ACM SIGMOD Intl.Conf. on Management of Data, San Diego, California, USA:ACM Press, 2003. 64~75
  • 7Sismanis Y, Deligiannakis A, Roussopoulos N, Kotidis Y.Dwarf: Shrinking the PetaCube. In: M. J. Franklin, B. Moon,A. Ailamaki, eds. Proc. ACM SIGMOD Intl. Conf. on Management of Data. Madison: ACM Press, 2002. 464~475
  • 8Barbara D, Sullivan M. Quasi-cubes: Exploiting approximation in Multidimensional Databases. SIGMOD Record, 1997,26:12-17
  • 9Beyer K, Ramakrishnan R. Bottom-Up Computation of Sparse and Iceberg CUBEs. In: A. Delis, C. Faloutsos, S. Ghandeharizadeh,eds. Proc. ACM SIGMOD Intl. Conf. on Management of Data. Philadelphia: ACM Press, 1999. 359~370
  • 10Zhao Y, Deshpande P M, Naughton J F. An Array-Based Algorithm for Simultaneous Multidimensional. In: Joan Peckham,ed.Proc. ACM SIGMOD Intl. Conf. on Management of Data. Tucson: ACM Press, 1997. 159-170

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部