摘要
针对目前普遍采用的误差平方和准则及Sigmoid转移函数在BP算法应用中存在的缺陷和不足,提出了基于交叉熵准则和新的S型转移函数构建的模糊神经网络分类器,并将这种分类器应用于心肌梗死的定位诊断,结果表明其训练效率和识别性能都明显优于传统的模糊神经网络。
In view of the fact that BP algorithm based on the common used error square sum rule and Sigmoid transfer function have some limitation and shortcomings, the cross entropy rule and a new transfer function are adopted for constructing and training process of the fuzzy neural network classifier. It is used to realize the orientation of myocardial infarction, and the results prove that this classifier has the capability of outperforming the traditional fuzzy neural network in training efficiency and recognizing ability obviously.
出处
《国防科技大学学报》
EI
CAS
CSCD
北大核心
2004年第5期52-56,共5页
Journal of National University of Defense Technology
关键词
交叉熵
转移函数
模糊神经网络分类器
心肌梗死
cross entropy
transfer function
fuzzy neural network classifier
myocardial infarction