摘要
简单贝叶斯法性能稳定,分类精度难以提高。通过分析搜索编码法产生的纠错输出码的性质,提出基于搜索编码的简单贝叶斯算法SCNB,并详细阐述了SCNB算法的应用流程。实验结果表明,采用搜索编码法能够有效提高简单贝叶斯分类器的泛化能力。
Nave-Bayes algorithm is a stable supervised learning method, and it is difficult to improve its predicting accuracy. This paper analyzes the properties of the error-correcting output codes generated by search-coding method at first, then presents a search coding based on vave Bayes algorithm (SCNB), and describes the flow chart of SCNB in detail. Experimental results show that search-coding method is an efficient approach to improve the generalization for Bayesian classifiers.
出处
《国防科技大学学报》
EI
CAS
CSCD
北大核心
2004年第5期63-69,共7页
Journal of National University of Defense Technology
基金
国家杰出青年科学基金资助项目(69825104)
关键词
监督分类
简单贝叶斯算法
纠错输出码
搜索编码法
supervised
classification
Nave-Bayes algorithm
error-correcting output code (ECOC)
search-coding method