期刊文献+

基于搜索编码的简单贝叶斯分类方法 被引量:1

A Bayesian Learning Algorithm Based on Search-Coding Method
下载PDF
导出
摘要 简单贝叶斯法性能稳定,分类精度难以提高。通过分析搜索编码法产生的纠错输出码的性质,提出基于搜索编码的简单贝叶斯算法SCNB,并详细阐述了SCNB算法的应用流程。实验结果表明,采用搜索编码法能够有效提高简单贝叶斯分类器的泛化能力。 Nave-Bayes algorithm is a stable supervised learning method, and it is difficult to improve its predicting accuracy. This paper analyzes the properties of the error-correcting output codes generated by search-coding method at first, then presents a search coding based on vave Bayes algorithm (SCNB), and describes the flow chart of SCNB in detail. Experimental results show that search-coding method is an efficient approach to improve the generalization for Bayesian classifiers.
出处 《国防科技大学学报》 EI CAS CSCD 北大核心 2004年第5期63-69,共7页 Journal of National University of Defense Technology
基金 国家杰出青年科学基金资助项目(69825104)
关键词 监督分类 简单贝叶斯算法 纠错输出码 搜索编码法 supervised classification Nave-Bayes algorithm error-correcting output code (ECOC) search-coding method
  • 相关文献

参考文献10

  • 1Langley P, Iba W, Thompson K. An analysis of Bayesian Classifiers[C]. In Proceedings of the Tenth National Conference on Artificial Intelligence. San Jose, CA: AAAI Press, 1992: 223-228.
  • 2Dietterich T. Machine Learning Research: Four Current Directions[C]. AI Magazine, 1997, 18(4): 97-136.
  • 3Ting K M, Zheng Z J. Improving the Performance of Boosting for Nave Bayesian Classification[J]. In Proceedings of Pacific-Asia Conference on Knowledge Discovery and Data Mining, Berlin: Springer-Verlag, 1999: 296-305.
  • 4Dietterich T, Bakiri G. Solving Multiclass Learning Problems Via Error-correcting Output Codes[J]. Journal of Artificial Intelligence Research, 1995, 2: 263-286.
  • 5Masulli F, Valentini G. Effectiveness of Error Correcting Output Codes in Multiclass Learning Problems[J]. Lecture Notes in Computer Science, 2000, 1857: 107-116.
  • 6Hsu C N, Huang H J, Wong T T. Why Discretization Works for Nave Bayesian Classifiers[C]. In Proceedings of the Seventeenth International Conference on Machine Learning, Morgan Kaufmann, San Francisco, CA, 2000: 399-406.
  • 7Yang Y, Webb G I. Non-disjoint Discretization for Nave-Bayes Classifiers[C]. In Proceedings of the Nineteenth International Conference on Machine Learning, Morgan Kaufmann, San Francisco, CA, 2002: 666-673.
  • 8Kohavi R. Scaling up the Accuracy of Nave-Bayes Classifiers: A Decision-tree Hybrid[C]. In Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, New York, AAAI Press, 1996: 202-207.
  • 9蒋艳凰,周海芳,杨学军.基于纠错编码的CSNN及其在遥感图像分类中的应用[J].计算机研究与发展,2003,40(7):918-924. 被引量:1
  • 10Bay S D. UCI KDD Archive (http://kdd.ics.uci.edu)[R]. 1999.

二级参考文献12

  • 1蒋艳凰 周海芳 杨学军.一种结构化神经网络分类器及其特性分析[J].计算机研究与发展,2002,39:291-297.
  • 2J Hertz, A Krogh, R G Palmer. Introduction to the Theory of Neural Computation. Reading, MA: Addison Wesley, 1991.
  • 3Peng Changhui, Wen Xuezhi. Recent Applications of Artificial Neural Networks in Forest Resource Management: An Overview.Environmental Decision Support Systems and Artificial Intelligence. Menlo Park, CA: AAAI Press, 1999. 15--22.
  • 4J W Shavlik, R J Mooney, G. G Towell. Symbolic and neural learning algorithms: An experimental comparison. Machine Learning, 1991, 6(1): 111--143.
  • 5B Chandrasekaran, A Goel. From numbers to symbols to knowledge structures: Artificial intelligence perspective on the classification task. IEEE Trans on System, Man, Cybernet,1988, 18(3): 415--424.
  • 6G P Drago, S Ridella. Statistically controlled activation weight initialization (SCAWI). IEEE Trans on Neural Networks, 1992,3(7) : 627--631.
  • 7T Nordstroem, B Svensson. Using and designing massivdy parallel computers for artificial neural networks. Journal of Paralld and Distributed Computing, 1992, 14(3): 260--285.
  • 8Sebastiano B Serpico, Fabio Roli. Classification of multisensor remote-sensing images by structured neural networks. IEEE Trans on Geoscience and Remote Sensing, 1995, 33(3): 562--578.
  • 9TJ Sejnowski, C R Rasenberg. Parallel networks that learn to pronounce English text. Journal of Complex Systems. 1987, 1(1): 145--168.
  • 10T Dietterich, G Bakiri. Solving multiclass learning problems via error-correcting output codes. Journal of Artificial Intelligence Research, 1995, 3(2): 263--286.

同被引文献6

  • 1Zhang T,Fossorrier M.Shuffled Belief Propagation Decoding[C].The Proceedings 36^th Asilomar Conference on Signal Systems and Computers,Pacific Grove,Grove,USA,2002:8-15.
  • 2Sharon E,Goldberger J.An Efficient Message-passing Schedule for LDPC Decoding[J].IEEE Commun.Lett.,2004,4:223-226.
  • 3Mao Y,Banihashemi A H.A New Schedule for Decoding Low-density Parity-check Codes[J].IEEE,2001:1007-1010.
  • 4Ryan W E.An Introduction to LDPC Codes[R].NSF CCR-9814472,Aug.2003.
  • 5Kschischang F R,et al.Factor Graphs and Sum Product Algorithm[J].IEEE Trans.Inform.Theory,2001,47(2):498-519.
  • 6贺玉成,杨莉,王新梅,福田明.置信传播译码算法的性能测度[J].电子学报,2002,30(4):577-580. 被引量:3

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部