期刊文献+

奇异半线性反应扩散方程初值问题的一些注记(英文)

Some Remarks on Cauchy Problem of Singular Semilinear Reaction-diffusion Equation
下载PDF
导出
摘要  考虑下述奇异半线性反应扩散方程初值问题: u t-1t△u=ur+f(x), t>0,x∈RNlimt→0+u(t,x)=0, x∈RN其中r>0,△=∑Ni=1 2 x2i,f(x)非负且f(x)∈L∞(RN).首先利用增算子不动点定理,重新证明了IVP在(0,+∞)上至少存在一个非负解,并给出了IVP解的迭代逼近序列.其次获得了一个有关IVP(1)正解的无限增长性的结果.最后,证明了当r>1时,去掉条件1r-1 n2,IVP的正解u(t)同样会产生爆破.研究结果表明情形limt→+∞u(t,x)=+∞不会出现. This paper deals with the following Cauchy problem of singular reaction-diffusion equationut-1tΔu=u^r+f(x),t>0, x∈R^N(lim)t→0^+ u(t, x)=0, x∈R^N (1) where r>0, Δ=∑Ni=1~2x^2_i, f(x) is nonnegative and f(x)∈L~∞(R^N). First we reprove that IVP(1) has at least one nonnegative solution on (0, +∞), which is obtained in our reference. It is remarkable that the method used here is fixed point theorem of increasing operator, which is very different from the literature and our proof is brief. At the same time, an iterative sequence of approximation solution, which convergence the solution of IVP(1), is also given. Second a result about the infinite growing up of positive solution is obtained. Finally we prove that if r>1, the positive solution u(t) of IVP(1) will blow up, which gets rid of the condition 1r-1n2 of our reference. Consequently, this result shows that the case (lim)t→+∞u(t, x)=+∞ does not appear in the literature.
作者 刘衍胜
出处 《应用泛函分析学报》 CSCD 2004年第3期193-199,共7页 Acta Analysis Functionalis Applicata
基金 Supported by the National Natural Science Foundation of China(10 1710 5 7) NaturalScience Foundation of Shandong Province (Z2 0 0 0 A0 2 )
关键词 半线性 奇异 扩散方程 初值问题 注记 正解 增算子 性反应 IVP 研究结果 singularity semilinear reaction-diffusion equation global solution
  • 相关文献

参考文献4

  • 1Jian S,Yang F.On the existence and nonexistence of solution,blow-up problem and the infinite growing up problem of solution for initial problem of semilinear parabolic equation with singular coefficient [J].Acta Mathematica Scientia,1997,17: 439-446.(in Chinese)
  • 2Peng D,Wang Z,Su X.Existence and growth of global solutions for a class of initial value problems of singular semilinear reaction-diffusion equations[J].Chinese Annals of Mathematics,2001,22 (A):483-490.(in Chinese)
  • 3Guo D.Methods of Semi-order in Nonlinear Analysis[M].Shandong Science and Technology House,Ji'nan,2000.(in Chinese)
  • 4Sun J.Fixed points and generalized fixed points of increasing operators[J].Acta Mathematica Sinica,1989,32: 457-463.(in Chinese)

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部