期刊文献+

多层组合桨搅拌槽内气-液分散特性的研究 被引量:42

Gas- Liquid Dispersion in a Multi-Impeller Stirred Tank
下载PDF
导出
摘要 在直径为0.476m的椭圆底搅拌槽中,采用由六叶半椭圆管叶盘式涡轮桨(HEDT)及四叶宽叶翼型桨的上提(WHU)及下压(WHD)操作组合的六种不同的三层桨,研究了气-液两相体系中的通气功率变化及气含率特性,获得不同桨型的通气搅拌功率及气含率的关联式;结果表明,底桨为HEDT的组合桨通气功率下降幅度最小,相同输入功率时气含率最高,其次为WHD,WHU为底桨时气液分散性能最差。因此,适用于气液两相操作的优化组合桨应以HEDT为底桨。此研究结果可为工业用多层组合桨气液搅拌反应器的设计提供参考。 In a triple-impeller stirred tank of 0.476 m in diameter the mixing power demand and gas holdup were measured by using a torque transducer and calibrated radar probe respectively. Six kinds of impeller combinations consisting of three basic impeller types, namely, half elliptical disk turbine (HEDT), four wide-blade hydrofoil upward-pumping (WHU) and downward-pumping (WHD) impellers, were used in the experiments. The gassed mixing power demand and gas holdup correlations for different agitators combination were proposed. The results show that the gas-liquid dispersion is mainly controlled by the bottom impeller in the multi-impeller stirred tanks. Among the six kinds impeller combinations the combinations with HEDT as bottom impeller have the flattest relative power demand (RPD, the power demanded in gas-liquid two phases operation compared to that at the same speed in liquid alone) and the highest gas holdup under the same power input and gas flow rate, and followed by the impeller combinations with WHD as the bottom impeller. The impeller combinations with WHU as bottom impeller have the lowest RPD and gas holdup. The impeller combinations with HEDT as bottom impeller are the optimal combinations for gas-liquid dispersion. The results are helpful for the design of the multi-impeller reactor.
出处 《高校化学工程学报》 EI CAS CSCD 北大核心 2004年第5期547-552,共6页 Journal of Chemical Engineering of Chinese Universities
基金 教育部优秀青年教师资助计划项目。
关键词 通气功率 气含率 气-液分散 组合桨 搅拌槽 Impellers Phase equilibria Torque converters
  • 相关文献

参考文献12

  • 1Aubin J, Sauze N L, et al. Hydrodynamics in an aerated tank stirred by a down-and an up-pumping axial impeller [A]. 6th World Congress of Chemical Engineering [C]. Melbourne: Australia 23-27 September 2001.
  • 2Vasconcelos J M T, Orvalho S C P, et al. Effect of blade shape on the performance of six-bladed disk turbine impellers [J]. Ind Eng Chem Res, 2000, 39 (1): 203-213.
  • 3王嘉骏,冯连芳,顾雪萍,章兆波,王凯.气液混合搅拌器组合的优化(英文)[J].合成橡胶工业,2002,25(5):320-320. 被引量:2
  • 4侯治中,冯连芳,李允明,许国军,王凯.不同类型搅拌器的气-液分散和混合特性[J].合成橡胶工业,1995,18(3):147-149. 被引量:5
  • 5Ajunwadkar S J, Sarananan K, et al. Optimizing the impeller combination for maximum hold-up with minimum power consumption [J]. Biochemical Engineering Journal, 1998, 1: 25-30.
  • 6GAO Z, Smith J M. Gas dispersion in sparged and boiling reactors [J]. Trans IChemE, Part A, 2001(79): 973-978.
  • 7侯治中,李允明,冯连芳,许国军,王凯.挡板进气多级搅拌槽内的气-液分散特性[J].合成橡胶工业,1995,18(4):218-220. 被引量:3
  • 8Nocentini M, Fajner D, et al. Gas-liquid mass transfer and holdup in vessels stirred with multiple rushton turbines: Water and water-glycerol solutions [J]. Ind Eng Chem Res, 1993, 32 (1): 19-26.
  • 9Smith J M, Gao Z. Power demand of gas dispersing impellers under high load conditions [J]. Chem Eng Res Des, 2001, 79: 575-580.
  • 10XU S A, Feng L F, Guo X P, et al. Gas-liquid floating particle mixing in an agitated vessel [J]. Chem Eng Technol, 23 (2), 2000:103-113.

二级参考文献4

共引文献11

同被引文献404

引证文献42

二级引证文献208

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部