摘要
本文研究广义Lienard系统x=(y),y=—(y),f(x)—g(z)闭轨的存在性问题.获得了保证此系统存在闭轨的两组充分条件.在我们的定理中f(x)允许无限次变号,特别在我们的定理2中,去掉了以往关于Lienard系统极限环存在性结果中f(0)<0(或>0)的常设条件.
In this paper,we have studied the existence of closed orbits for the generalized Lienard system: x=φ(y), y=-φ(y)f(x)-g(x). Some sufficient conditions are established to ensure that the System has at least one closed orbit. In our theorems, we allow the sign of f(x) to change infinite times, (?) particular, our theorem 2 gives the conditions under which the system has a closed orbit without the traditional assumption that f(0)<0 (or f(0)>0).
出处
《湖南大学学报(自然科学版)》
EI
CAS
CSCD
1993年第4期16-20,共5页
Journal of Hunan University:Natural Sciences
基金
高等学校博士学科点专项科研基金