期刊文献+

应用人工神经网络预测转杯纱性能 被引量:1

Application of artificial neural network to predict rotor-spun yarn properties
下载PDF
导出
摘要 应用人工神经网络对不同混纺比转杯纱的性能进行预测。研究中使用的原料为棉、聚酯纤维、粘胶纤维和亚麻。这些纤维以不同混坊比进行随机混合,在Uster MDTA 3设备上加工成条子。然后,在一台转杯纺小样机上将这些条子纺制成388个转杯纱纱样。测试了纱线的拉伸性能、条干不匀率、毛羽和捻度。研究中采用基于误差反向传播算法的人工神经网络软件ITANET-3.7预测纱线性能。通过对不同网络参数进行优化得到了最佳的网络结构,还研究了该网络的性能。 This project attempted to apply artificial neural network for prediction of rotor-spun yarn properties from different binary blend ratios. Cotton, polyester, viscose and flax were chosen for this study. These fibers were randomly mixed according to different binary blends and those mixes were converted into slivers using Uster MDTA 3 machine. Afferwards, those slivers were spun on a laboratory based rotor-spinning machine and 388 types of yarns were produced. The tensile, irregularity and hairiness and twist values of these yarns were estimated. In order to predict yarn quality, ITANET-3.7 , which is an artificial neural network software based on back propagation algorithm, was applied in this research work. The best net structure was found by optimizing different net variables and performance of that net was studied.
出处 《国际纺织导报》 2004年第3期30-34,共5页 Melliand China
关键词 转杯纱 混纺比 转杯纺 纱线性能 小样 捻度 毛羽 条干不匀率 聚酯纤维 混合 rotor spun yarn property predict artificial neural network
  • 相关文献

参考文献8

  • 1[1]Ramesh M C,Rajamanickam R,Jayaraman S.The Prediction of Tensile Properties by Using Artificial Neural Networks.Journal of Textile Institute,1995,86:459~469
  • 2[2]Zhu R,Ethridge M D.Predicting Hairiness for Ring and Rotor Spun Yarns and Analysing the Impact of Fiber Properties.Textile Research Journal,1997,67:694~698
  • 3[3]Pynckles F,Kiekens P,Sette S,et al.Using of Neural Nets for Determining the Spinnability of Fibers.Journal of Textile Institute,1995,86:425~437
  • 4[4]Pynckles F,Kiekens P,Sette S,et al.The Use of Neural Nets to Simulate the Spinning Process.Journal of Textile Institute,1997,88:440~447
  • 5[5]Zurada J M.Introduction to Artificial Neural Systems.Jaico Publishing House,India,1999
  • 6[6]Haykin S.Neural Networks,A Comprehensive Foundation.Macmillan College Publishing Co.Inc.,1994
  • 7[7]Schoeneburg E,Hansen N,Gawelczyk A.Neuronale Netzwerke.Markt&Technik Verlag AG,Germany
  • 8[8]Veit,D.Einstellung von Falschdraht-Texturiemaschinen mit Hilfe der Evolutionsstrategie und Neruonaler Netze.Doctoral Dissertation at the Institute for Textile Technology Aachen ( ITA ).RWTH Aachen University,Germany,1999

同被引文献13

  • 1李黛萍,阴建华.用多因子相关指数法预测织物强力的研究[J].棉纺织技术,2006,34(10):19-21. 被引量:3
  • 2Gucer D E, Gurland J. Comparison of Statistics of Two Fracture Models[-J]. Journal of the Mechanics and Physics of Solids, 1962, 10(3): 365-373.
  • 3Rosen B W. Tensile Failure of Fibrous Composites[J]. AIAA Journal, 1964(2) 1985 - 1991.
  • 4Harlow D G, Phoenix S L. Probability Distribution for the Strength of Composite Material I: Two-Level Bounds[J]. In- ternational Journal of Fracture, 1981, 17(4) : 347 - 372.
  • 5Harlow D G, Phoenix S L. Probability Distribution for the Strength of Composite Material II: A Convergent Sequence of Tight Bounds[-J]. International Journal of Fracture, 1981, 17(6) : 601 - 630.
  • 6Hedgepeth J M. Stress Concentration in Filamentary Structures[M]. United States: National Aeronautics and space Administration, 1961.
  • 7Wada A, Fukuda H. Approximate Upper and Lower Bounds for the Strength of Unidirectional Composites[J. Com- posite Science and Technology, 1999, 59(1) 89- 96.
  • 8Chen Guohua, Ding Xin. Monte Carlo Simulation of the Fracture of Plain Fabric Under Biaxial Extension[C]//Proceed- ings of the Textile Institue 83rd World Conference. Shanghai, China: TIWC, 2005.
  • 9Chen Guohua, Ding Xin. Breaking Progress Simulation and Strength Prediction of Woven Fabric under Uni-Axial Ten- sile[J]. Textile Research Journal, 2006, 76(12) : 875 - 882.
  • 10Daniels H E. The Statistical Theory of the Strength of Bundles of Threads. I[J]. Proc Roy Soc Lond, 1945, 183(995) 4O5 - 435.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部