期刊文献+

小波变换在松动件检测系统报警中的应用研究 被引量:2

Application Study on Wavelet-transformation to Alarming in Loose Parts Monitoring System
下载PDF
导出
摘要 研究了小波变换在松动件检测系统(LPMS)报警中的应用。在分析LPMS中产生误报主要原因的基础上,结合小波时 频域分析特点,提出了基于小波均方值报警理论,并以秦山核电站一号机组为例,选择相对噪声较小的尺度作为报警基准,能有效地抑制背景噪声对报警的影响。该文提出的RMS阈值和RMS时间宽度阈值的双阈值小波报警算法,使得报警更加可靠。 The application of wavelet-transformation to alarming in loose parts monitoring system (LPMS) was studied. On the base of analyzing the main factor to the error-alarming in LPMS, the alarming theory in view of wavelet's root mean square (RMS) was established by choosing minor scale of relative noise as alarming datum point, and the base noise which affected alarm was checked effectively. Moreover RMS threshold and time width RMS threshold wavelet alarming algorithm were adopted, all making the alarm more dependable.
出处 《原子能科学技术》 EI CAS CSCD 2004年第5期432-435,共4页 Atomic Energy Science and Technology
关键词 报警 小波变换 双阈值 检测系统 算法 误报 RMS 松动 抑制 影响 Alarm systems Condition monitoring Impulse noise Nuclear reactors Thermal noise Wavelet transforms
  • 相关文献

参考文献7

  • 1Charles WM.Loose Parts Signal Theory[J].Progress in Nuclear Energy ,1985,15(5):535~545.
  • 2Charles WM.Loose Parts Monitoring System Improvements[J].Progress in Nuclear Energy ,1988,21(6):505~513.
  • 3Olma BJ,Schutz B.Advanced Burst Prcessing Methods in Loose Parts Monitoring [J].Processing in Nuclear Energy,1988,15(6):525~535.
  • 4Bechytold B,Kunze U.Kues'95--The Modern Diagnstic System for Loose Parts Monitoring[J]. Progress in Nuclear Energy ,1999,34(3):221~230.
  • 5Zigler GR. On-line Loose Parts Monitoring False Alarm Discrimination [J].Progress in Nuclear Energy ,1985,15(2):577~581.
  • 6方力先,陈仲仪,钱惠生.用逐级消除平均误差的LMS自适应算法检测瞬态信号[J].信号处理,2000,16(1):55-57. 被引量:3
  • 7方力先,陈仲仪,钱惠生.基于多尺度分解的瞬态信号检测[J].数据采集与处理,1999,14(4):467-470. 被引量:4

二级参考文献6

  • 1刘贵忠 邸双亮.小波分析及应用[M].西安:西安电子科技大学出版社,1995..
  • 2[1]B.Widrow and J.M.McCool,“A comparison of adaptive algorithms based on the methods of steepest descent and random search,”IEEE Trans,Antennas Propag,vol.Ap-24 no.5,pp615-637,Sept,1976.
  • 3[2]B.Widrow,J.M.McCcol,M.G.Larimore,and C.R.Johnson,Jr.,“stationnary and nonstationary learning characteristcs of the LMS adaptive filter,” Proc.IEEE,vol.64,no.8,pp1151-1162,Aug,1976.
  • 4[3]B.Widrow et al.“Adaptive noisem cancelling: principles and applications” Proc.IEEE,vol.63,no.12,pp1692-1716,Dee.1975.
  • 5[4]B.Widrow and E.Walach,“On the statiststical efficiency of the LMS Issue on Adaptive Filtering,vol.30,no.2,partl,pp.211-221,Mai.1984.
  • 6[5]D.C.Farden,“Tracking properties of adaptive signal procesing algorithms,”IEEE Trans.Acout.Speech Signal Process,vol.ASSP-29,pp439,Tune 1981.

共引文献5

同被引文献8

  • 1BECHTOLD B,KUNZ U.KUES'95-The modern diagnostic system for loose parts monitoring[J].Progress in Nuclear Energy,1999,34(3):221-230.
  • 2SZAPPANOS G,POR G.Basics ideas and realization of completely digitized loose part detection system HELPS[J].Progress in Nuclear Energy,1999,34(3):195-201.
  • 3POR G,KISS J,SOROSANSZKY I,et al.Development of a false alarm free advanced loose parts monitoring system (ALPS)[J].Progress in Nuclear Energy,2003,43(3):243-251.
  • 4陈万里,王丽霞.基于LabVIEW的虚拟仪器的研究[J].仪器仪表用户,2007,14(6):14-15. 被引量:5
  • 5Charles W M. Loose.Parts Monitoring System Improvements[J].Progress in Nuclear Energy,1988,(06):505-513.
  • 6Bechtold B,Kunze U. KUES'95-The modern diagnostic system for losse parts monitoring[J].Progress in Nuclear Energy,1999,(03):221-230.doi:10.1016/S0149-1970(98)00008-0.
  • 7袁培铎.基于Labview与Matlab混合编程的应用研究[J].机械制造与自动化,2007,36(6):129-131. 被引量:17
  • 8毛汉领,黄振峰,陈仲仪.基于信号时频特征的神经网络报警方法[J].核动力工程,1998,19(3):265-269. 被引量:2

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部