期刊文献+

二维非结构三角形网格的非振荡方法

A Nonoscillatory Finite Volume Method for 2d Hyperbolic Conservation Laws on Unstructured Triangular Meshes
下载PDF
导出
摘要 对非结构三角形网络给出了一种非振荡有限体积方法,该方法在最小平方意义下的构造了非振荡重构良好,对二维Burgers方程国标绕流进行了数值计算,得到比较满意的结果. A second nonoscillatory finite volume scheme, based on a least square linear reconstruction to the flow variable, is given for 2d hyperbolic consevation laws on unstructured triangular mesh. Numerical result for scale Burgers equation and Blunt cylinder flow are presented.
出处 《湖南师范大学自然科学学报》 EI CAS 北大核心 2004年第3期26-28,共3页 Journal of Natural Science of Hunan Normal University
基金 国家自然科学基金资助项目(10001038)
关键词 有限体积方法 二维 BURGERS方程 振荡 平方 绕流 数值计算 三角形网格 网络 重构 Least squares approximations Mathematical models Matrix algebra Nanotechnology Oscillations Set theory
  • 相关文献

参考文献5

  • 1HARTEN A. High resolution schemes for hyperbolic conservation laws[J]. J Comp Phy,1983,49(3):357-393.
  • 2ABGRALL R. On essentially non-oscillatory schemes on unstructured meshes[J]. J Comp Phy,1994,14(1):45-58.
  • 3LIU X D. A maximum principle satisfying modification of triangle based adaptive stencils for the solution of scalar hyperbolic conservation laws[J]. SIAM J Numer Anal,1993,30(3):701-716.
  • 4DURLOFSKY L, Engquist B Osher S. Triangle based adaptive stencil for the solution of hyperbolic conservation laws[J]. J Comp Phy,1992,98(1):64-73.
  • 5D H WAGNER. The Riemann problem in two space dimension for single Conservation law[J]. SIAM J Math Anal,1983,26:1 325-1 341.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部