期刊文献+

松花江水中有机化学品的生物毒性预测 被引量:2

Study on bio-toxicity prediction of organic chemicals in Songhua River
下载PDF
导出
摘要 应用人工神经网络技术构建的定量构效关系模型(QSAR)对存在松花江水中的有机化学品的毒性进行了预测.结果显示,有机化学品对酵母菌毒性的预测值与实测值接近,预测误差较小.另外,采用所建立的有机化学品对酵母菌毒性和对呆鲦鱼毒性的相关性方程预测了松花江水中有机化学品对呆鲦鱼的毒性,结果显示,有机化学品对酵母菌的毒性与对呆鲦鱼的毒性之间具有很好的相关性(R=0.9826),从整个有机化学品对呆鲦鱼毒性大小的趋势上看,预测值与实验值基本吻合.因此,得出采用低等微生物—酵母菌替代高等生物—鱼作为指示生物进行有机化学品毒性的评价是可行的,这一研究成果对大量有机化学品毒性筛选和进行优先污染物控制方面具有重要的意义. Using quantitative structure-activity relationship (QSAR) model built by artificial neural network (ANN) predict the bio-toxicity of organic chemicals in Songhua River. The results showed that prediction value of bio-toxicity of organic chemicals on yeast saccharomyces cerevisiae is approximately equal to test value, and the prediction error is less. In addition, the toxicity of organic chemicals on fathead minnow is also predicted using correlation equation between the toxicity of organic chemicals on yeast saccharomyces cerevisiae and on fathead minnow. The results showed that there is the better relativity between the toxicity of organic chemicals on yeast saccharomyces cerevisiae and on fathead minnow, and the correlation coefficient =(0.982 6). From the toxicity of different organic chemicals on fathead minnow, prediction vale is near to test value. So using yeast Saccharomyces cerevisiae instead of fish as indicator organism is feasible. The study is significant for screening organic chemicals and controlling priority pollutants.
作者 高大文 王鹏
出处 《哈尔滨商业大学学报(自然科学版)》 CAS 2004年第5期549-551,559,共4页 Journal of Harbin University of Commerce:Natural Sciences Edition
关键词 生物毒性 相关性 制方 吻合 预测 酵母菌 实验 有机化学品 江水 松花江 artificial neural network QSAR organic chemical bio-toxicity
  • 相关文献

参考文献7

二级参考文献22

共引文献49

同被引文献37

  • 1梁爱华,叶祖光.千里光属植物的毒性研究进展[J].中国中药杂志,2006,31(2):93-97. 被引量:68
  • 2王斌,余刚,张祖麟,胡洪营,王连生.烷基醇化合物的定量结构活性相关及联合毒性预测[J].科学通报,2006,51(13):1513-1518. 被引量:8
  • 3孙燕,臧传新,任廷革,李宇航.支持向量机方法在《伤寒论》方分类建模中的应用[J].中国中医药信息杂志,2007,14(1):101-102. 被引量:9
  • 4郝光荣,等.实验动物学[M].上海:第二军医大学出版社,2004.
  • 5KAVLOCK RJ, DIX DJ, HOUCK KA, et al. ToxCastTM: Developing predictive signatures for chemical toxicity [ C ]. Procedding of the 6th World Congress on Alternatives & Animal Use in the Life Sciences. Tokyo, Japanese Society for Alternatives to Animal Experiments ( JSAAE), 2007 : 623 - 627.
  • 6MOHAN CG. Impact of computational structure-based predictive toxicology in drug discovery [ J ]. Comb Chem High Throughput Screen, 2011, 14(5) : 417 -426.
  • 7NESTLER EJ. Molecular mechanisms of drug addiction [ J ]. Neuropharmacology, 2004, 47 ( Suppl 1 ) : 24 - 32.
  • 8WOLFGANG M, BREIDENBACH A, FISCHER H, et al. Conlputational toxicology in drug development [ J 1. Drug Discov To- day, 2008, 13(7 -8) : 303 -310.
  • 9DIVITA G, TAMANNA G, GOPI MC. Exploring QSTR and toxicophore of hERG K ^+ channel blockers using GFA and hypogen techniques [ J ]. J Mol Graph Model, 2008, 26 (6) : 966 - 976.
  • 10YIN-TAK W, LAI DY, ARGUS MF, et al. Development of structure-activity relationship rules for predicting carcinogenic potential of chemicals [ J ]. Toxicol Lett, 1995, 79 ( 1 - 3) : 219 - 228.

引证文献2

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部