期刊文献+

大滞后网络拥塞的智能前馈组合控制系统 被引量:1

Intelligent Feed-forward Combination Control System for NonlinearLarge-lag Congestion in Networks
下载PDF
导出
摘要 在基于速率反馈的网络流量控制系统中,信元在网络中的传播时延,特别是网络流量控制中的非线性大滞后,会带来极大的网络拥塞和数据丢失。针对流量控制系统中存在的非线性大滞后和不确定性,提出了一种新的基于智能前馈控制策略的组合控制器。前馈控制部分由两个神经网络分别实现逆模型辩识与直接逆控制,可以在线调整网络权值;基本控制器由PID和Fuzzy PID实现分段控制,根据不同误差变化范围调整控制组合。仿真表明本方案能使信元发送速率快速响应网络变化,特别对于大滞后对象,控制的适应性和鲁棒性更好。 The propagation delay of cells, especially the nonlinear large-lag of communication may create congestion and loss of data in rate-based flow control in networks. Proposed in this paper is a kind of feed-forward combination controller, which can better overcome the adverse effect caused by the large time delay and its indeterminacy. The feed-forward control part consists of two neural networks,one realizes identification of inverse model,and the other is used for inverse control. The basic control part is made up of PID and fuzzy PID controller which can self-switch between them according to various stages of output error so as to adjust combination of flow control in network. The simulation shows that the scheme can make source rates respond to the changes of network status rapidly, avoid the congestion. It has much better adaptability and robustness in large time delay control system.
出处 《贵州工业大学学报(自然科学版)》 CAS 2004年第5期99-102,共4页 Journal of Guizhou University of Technology(Natural Science Edition)
关键词 信元 流量控制 滞后 逆模型辩识 神经网络 cell flow control lag identification of inverse model neural network
  • 相关文献

参考文献10

二级参考文献40

  • 1逯绍义.计算机通信网信息量理论[M].北京:电子工业出版社,1997,9..
  • 2[1]Kelly F P. Models for a self-managed Internet [A]. In: Philosophical Transactions of the Royal Society A358 [C].London: The Royal Society, 2000. 2335-2348.
  • 3[2]Fendick K W,Rodrigues M A. Asymptotic analysis of adaptive rate control for diverse sources with delayed feedback[J]. IEEE Transactions on Information Theory, 1994, 40(6): 2008-2025.
  • 4[3]Jacobson V. Congestion avoidance and control [A]. In: Proceedings of ACM SIGCOMM'88[C]. Stanford, CA,1988. 314-329.
  • 5[4]Kelly F P, Maulloo A,Tan D. Rate control for communication networks: shadow prices, proportional fairness,and stability [J]. J Oper Res Soc, 1998, 49(3): 237-252.
  • 6[5]Low S H,Lapsley D E. Optimization flow control I: basic algorithm and convergence [J]. IEEE/ACM Trans on Networking, 1999,7(6):861-874.
  • 7[6]Johari R,Tan D. End-to-end congestion control for the Internet: delays and stability [J]. IEEE/ACM Trans on Networking, 2001, 9(6): 818-832.
  • 8[7]Wang X F, Chen G R, Ko K T. A stability theorem for Internet congestion control [J]. Systems & Control Letters, 2002, 45(1): 81-85.
  • 9[8]Hale J. Theory of functional differential equations [M]. New York: Springer-verlag, 1977.
  • 10[9]Horn R, Johnson C. Matrix analysis [M]. Cambridge: Cambridge University Press, 1985.

共引文献24

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部