期刊文献+

挤压比对6201铝合金半固态连续挤压成形组织和性能的影响 被引量:11

Effect of extrusion ratio on microstructures and properties of 6201 alloy wire produced by semisolid continuous extrusion
下载PDF
导出
摘要 研究了挤压比对6201合金线材的微观组织、力学性能和导电性能的影响。结果表明:随着挤压比的增大,T6态合金的强化相β′(Mg2Si)弥散质点的尺寸减小,弥散程度增加,合金线材的抗拉强度,延伸率和电阻率增大,其增大的趋势随着挤压比的进一步增加而逐渐减小;当挤压比一定时,随着在线固溶温度与时效温度的升高,线材的力学性能下降,导电性能升高。当挤压比为16.5~29.7,线固溶温度为520~540℃,时效温度为150~160℃时,合金力学性能和导电性能分别为:σb=310~328MPa,δ=8.5%~10.3%,ρ=0.0322~0.0328nΩ·m,较好地满足Al Mg Si导线标准要求。采用合理的挤压比,可直接生产性能良好的铝合金导电线材。 Effect of extrusion ratio on microstructures, mechanical properties and electric resistivity of 6201 alloy wire were investigated. It is shown that when the extrusion ratio increases, under T6 heat treatment state, precipitation-hardening phases β′(Mg_2Si) precipitate heavily and become smaller, meanwhile, the tensile strength, elongation and electric resistivity increase. However, this increase tendency becomes moderate with further increase of extrusion ratio. For a given extrusion ratio, mechanical properties of alloy wire decrease and conductivity increases with increase of on-line solution temperature and ageing temperature. Under the conditions that the extrusion ratio is 16.529.7, on-line solution temperature is 520540 ℃ and ageing temperature is 150160 ℃, the mechanical properties and electric resistivity are σ_b=310328 MPa, δ=8.5%10.3% and ρ=0.032 20.032 8 nΩ·m respectively. It is satisfied for the application of Al-Mg-Si conductor wire. So fine aluminum conductor wire can be produced by the proposed process and under proper extrusion ratio.
出处 《中国有色金属学报》 EI CAS CSCD 北大核心 2004年第10期1683-1688,共6页 The Chinese Journal of Nonferrous Metals
基金 国家自然科学基金与上海宝钢集团公司联合资助项目(50274020)
关键词 6201铝合金 挤压比 连续挤压 半固态 电阻率 6201 aluminum alloy extrusion ratio continuous extrusion semi-solid resistivity
  • 相关文献

参考文献13

  • 1[3]Murayama M, Hono K, Saga M, et al. Atom probe studies on the early stages of precipitation in Al-Mg-Si alloys[J]. Materials Science and Engineering, 1998,A250: 127- 132.
  • 2[4]Edwards G A, Stiller K, Dunlop G L, et al. The precipitation sequence in A1-Mg-Si alloys[J]. Acta Mater,1998, 46(11): 3893 -3904.
  • 3[5]Lodgaard L, Ryum N. Precipitation of dispersoids containing Mn and/or Cr in Al-Mg-Si alloys[J]. Materials Science and Engineering, 2000, A283: 144-152.
  • 4[6]Cavazos J L, Colas R. Quench sensitivity of a heat treatable aluminum alloy [J]. Materials Science and Engineering, 2003, A363: 171- 178.
  • 5[7]Karabay S, Zeren M, Yilmaz M. Investigation extrusion ratio effect on mechanical behavior of extruded alloy AA-6063 [ J]. Journal of Materials Processing Technology, 2003(135): 101 - 108.
  • 6[8]McQueen H J, Xia X, Cui X, et al. Solution and precipitation effects on hot workability of 6201 alloy[J].Materials Science and Engineering, 2001, A319 - 321:420 - 424.
  • 7[9]Cavazos J L, Colas R. Precipitation in a heat treatable aluminum alloy cooled at different rates[J]. Materials Characterization, 2001(47) : 175 - 179.
  • 8[10]Murayama M, Hono K. Pre-precipitate and precipitation processes in Al-Mg-Si alloys[J]. Acta Mater,1999, 47(5) : 1537 - 1548.
  • 9[11]Andersen S J, Zandbergen H W, Jansen J, et al. The crystal structure of the β" phase in Al-Mg-Si alloys[J]. Ata Mater, 1998, 46(9) : 3283 - 3298.
  • 10[12]Gupta A K, Lloyd D J, Court S A. Precipitation hardening in Al-Mg-Si alloys with and without excess Si[J]. Materials Science and Engineering, 2001,A316: 11 - 17.

同被引文献133

引证文献11

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部