摘要
本文提供了一种解带有特定奇异核为1/(s-t)~a(0<a<1) 的 Volterra 第2种积分方程的方法。主要是通过对方程进行拉氏变换、函数的幂级数展开等过程,求得未知函数的拉氏变换表达式,然后对其进行反变换,即得所求函数。最后给出了此解的证明及 a=1/2的特例。
This paper presents a method for solving a volterra integral equation of the
second kind with such a singular kernal as 1/(s-t)(?)(0<α<1) .First,the Laplace
expression of the unknown function is obtained mainly by means of Laplace transform,
asymptotic expansion etc.,then the unknown function via the inverse of Laplace trans-
form can be got.Second,the aquired asymptotic solution is strictly proved for its cor-
retness.Finally,a concrete example is given as α=1/2.
出处
《华南理工大学学报(自然科学版)》
EI
CAS
CSCD
1993年第3期74-78,共5页
Journal of South China University of Technology(Natural Science Edition)
关键词
奇异分方程
拉普拉斯变换
解
singular integral equation
Laplace transform
asymptotic expansion