期刊文献+

不具有简单轨的4阶非单谷Feigenbaum映射的拟极限集 被引量:2

Likely limit sets of 4-order nonsingle-valley Feigenbaum's maps without simple periodic orbits
下载PDF
导出
摘要 讨论一类不具有简单轨的4阶Feigenbaum映射拟极限集的存在条件及其Hausdorff维数.不具有简单轨的4阶Feigenbaum映射必然产生混沌,从而使拟极限集的存在性问题复杂化.利用分形几何中的方法证明了此类映射拟极限集的存在性,并相应的对其Hausdorff维数做出估计.最后给一个具体例子,说明确实存在不具有简单轨的4阶Feigenbaum映射. 4-order nonsingle-valley Feigenbaum's maps without simple periodic orbits must bring chaos, chaos also bring the complication of the problem on the existence of likely limit sets. We testified the existence of the maps' likely limit sets using the method of fractal geometry and estimated their Hausdorff dimension. In the end, we gave an idiographic example to proof the existence of 4-order nonsingle-valley Feigenbaum's maps without simple periodic orbits.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2004年第4期499-502,共4页 Journal of Jilin University:Science Edition
关键词 FEIGENBAUM映射 极限集 HAUSDORFF维数 证明 存在条件 分形几何 估计 例子 混沌 Feigenbaum's map likely limit set Hausdorff dimension
  • 相关文献

参考文献6

  • 1[1]Feigenbaum M J. Quantitative universality for a class of nonlinear transformation [J]. J Stat Phys, 1978, 19: 25-52.
  • 2[2]YANG Lu, ZHANG Jing-zhong. The second type of Feigenbaum's functional equations [J]. Scientia Sinica A, 1986, 29: 1252-1263. (杨路, 张景中. 第二类Feigenbaum函数方程 [J]. 中国科学A辑, 1986, 29: 1252-1263.)
  • 3LIAO GONGFU.ON THE FEIGENBAUM'S FUNCTIONAL EQUATION_f^P (λx )=λf (x)[J].Chinese Annals of Mathematics,Series B,1994,15(1):81-88. 被引量:12
  • 4[4]LIAO Gong-fu, HUANG Gui-feng, HE Bo-he. Likely limit sets of Feigenbaum's maps and their Hausdorrf dimension [J]. Northeast Math J, 1997, 13(3): 349-356.
  • 5[6]ZHANG Ai-hua, WANG Li-juan, SONG Wei. Nonsingle-Valley continuous solution of p-order Feigenbaum's functional equation [J]. Northeast Math J, 2003, (4): 351-356.
  • 6[7]Block L. Simple periodic orbits of mappings of the interval [J]. Trans Amer Math Soc, 1979, 254: 391-398.

共引文献11

同被引文献5

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部