摘要
本文利用李雅普诺夫函数及一个非线性积分不等式讨论二阶滞后型泛函微分方程解的有界性和趋零性,给出两组保证方程的全体解有界及趋于零(t→∞)的充分条件.所得的结果适用于微分差分方程和具连续分布滞量的积分微分方程.
In this paper,a Lyapunov function and a nonlinear integral inequality are employed to discuss the boundedness and asymptotic behavior of solutions to certain second order functional differential e-quations. Provided are two groups of sufficient conditions on boundedness and convergency to zero for solutions to the given equation. Results are useful for differential difference equations and differential integral equations with continuous distributed retards.
出处
《华南师范大学学报(自然科学版)》
CAS
1993年第1期105-112,共8页
Journal of South China Normal University(Natural Science Edition)
基金
国家自然科学基金资助课题
关键词
泛函微分方程
有界性
趋零性
解
滞后型
functional differential equation
boundedness
convergency to zero
Lyapunov function
Bellman-Gronwall inequality