摘要
在空间E^(n+1)的区域Q=Ω×(O,T)考虑满足较一般结构条件的一类退缩抛物型方程(1),证明广义解的有界性,以及如果它的解在Q的抛物边界等于零时,必是平凡解。
At the region Q=Ω·(O,T) in the space E^(n+1), the author considers one class of degenerate parabolic equations satisfying rather general structural conditions. The bounded- ness of generalized solutions is demonstrated. It is also demonstrated that the solution must be trivial solution if the solution vanishes at the parabolic boundary of Q.
出处
《华侨大学学报(自然科学版)》
CAS
1993年第4期403-411,共9页
Journal of Huaqiao University(Natural Science)
关键词
抛物型方程
广义解
有界性
平凡解
degenerate parabolic equation
generalized solution
boundedness
trivial solution