期刊文献+

补偿列紧理论与一个六阶奇异扰动偏微分方程解的收敛性

COMPENSATED COMPACTNESS AND CONVERGENCE OF A SINGULAR PERTURBED SIXTH ORDER PARTIAL DIFFERENTIAL EQUATIONS
下载PDF
导出
摘要 用补偿列紧理论得到了如下形式的六阶奇异扰动偏微分方程u_t+f_x(u)-δu_(xxxxxx)=εu_(xx)的解{u_~δ}当δ→O^+,ε→O^+时的收敛性。 We study the convergence of solutions {u_(?)~δ} for the partial differential equation of the formu_t+f_x(u)-δu_(xxxxxx)=εu_(xx)as ε and δ approach zero, where the flux function f is smooth and nonlinear (but not necessary convex). Using an argument derived from the method of compensated compactness, we prove that if the higher order viscosity parameter δ is small enough to the dissipation parameter ε, then there exists a subsequence of the solutions {u_(?)~δ} which converges pointwise almost everywhere to the generalized solution of the limit hyperbolic conservation law.
出处 《华中师范大学学报(自然科学版)》 CAS CSCD 1993年第1期1-5,共5页 Journal of Central China Normal University:Natural Sciences
关键词 补偿列紧理论 偏微分方程 收敛性 theory of compensated compactness entropy condition weak continuity of nonlinear functions
  • 相关文献

参考文献1

  • 1陈贵强,陆云光.补偿列紧理论应用途径的研究[J]科学通报,1988(09).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部