摘要
用补偿列紧理论得到了如下形式的六阶奇异扰动偏微分方程u_t+f_x(u)-δu_(xxxxxx)=εu_(xx)的解{u_~δ}当δ→O^+,ε→O^+时的收敛性。
We study the convergence of solutions {u_(?)~δ} for the partial differential equation of the formu_t+f_x(u)-δu_(xxxxxx)=εu_(xx)as ε and δ approach zero, where the flux function f is smooth and nonlinear (but not necessary convex). Using an argument derived from the method of compensated compactness, we prove that if the higher order viscosity parameter δ is small enough to the dissipation parameter ε, then there exists a subsequence of the solutions {u_(?)~δ} which converges pointwise almost everywhere to the generalized solution of the limit hyperbolic conservation law.
出处
《华中师范大学学报(自然科学版)》
CAS
CSCD
1993年第1期1-5,共5页
Journal of Central China Normal University:Natural Sciences
关键词
补偿列紧理论
偏微分方程
收敛性
theory of compensated compactness
entropy condition
weak continuity of nonlinear functions