摘要
采用支持向量机(SVM)对网络业务流数据进行预测估计,通过训练样本,从而获得样本以外数据的分布规律。在此基础上,设计了一种网络排队队列缓存的预估模型。实验表明,该模型具有较高的训练效率和很高的估计精确度。
Based on the theory of support vector machine, distribution law of other data was obtained by analysis and training the sample data was obtained. On basis of this, a buffer estimation model was implemented. Simulation results show that this model have higher training efficiency and estimation precision.
出处
《通信学报》
EI
CSCD
北大核心
2004年第10期45-50,共6页
Journal on Communications
基金
云南省计算机技术应用重点实验室开放基金资助项目