期刊文献+

基于支持向量机的缓存预估模型的设计与实现

Design and implementation of buffer occupancy estimation model based on support vector machine
下载PDF
导出
摘要 采用支持向量机(SVM)对网络业务流数据进行预测估计,通过训练样本,从而获得样本以外数据的分布规律。在此基础上,设计了一种网络排队队列缓存的预估模型。实验表明,该模型具有较高的训练效率和很高的估计精确度。 Based on the theory of support vector machine, distribution law of other data was obtained by analysis and training the sample data was obtained. On basis of this, a buffer estimation model was implemented. Simulation results show that this model have higher training efficiency and estimation precision.
出处 《通信学报》 EI CSCD 北大核心 2004年第10期45-50,共6页 Journal on Communications
基金 云南省计算机技术应用重点实验室开放基金资助项目
关键词 缓存 支持向量机(SVM) 网络业务流 训练样本 排队队列 数据 设计 训练效率 基础 实验 communications and information systems support vector machine buffer occupancy estimation model
  • 相关文献

参考文献7

  • 1LELAND W E, TAQQU M S, WILLINGER W, et al. On the self-similar nature of ethernet traffic(extended version)[J]. IEEE/ACM Trans on Networking, 1994, 2(1):1-15.
  • 2PAXSON V, FLOYD S. Wide-area traffic:the failure of Poisson modeling[A]. Proc ACM SIGCOMM'94[C]. London, 1994. 257-268.
  • 3VAPNIK V. The Nature of Statistical Learning Theory[M]. New York: Springer Verlag, 1995.
  • 4VAPNIK V. Statistical Learning Theory[M]. New York: John Wiley, 1998.
  • 5DRUCKER H, WU D, VAPNIK V. Support vector machine for spam categorization[J]. IEEE Trans on Neural Networks, 1999, 10: 1048-1054.
  • 6JOHAN A K. Suykens, nonlinear modeling and support vector machines[J]. IEEE Instrumentation and Measurement Technology Conference, 2001, 5: 21-23.
  • 7WILLIAM S. 高速网络TCP/IP和ATM的设计原理[M]. Prentice Hall,INC,1999. 127-128.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部