期刊文献+

快速自底向上构造神经网络的方法 被引量:6

Fast Approach for Cascade-Correlation Learning
原文传递
导出
摘要 介绍了一种构造神经网络的新方法 .常规的瀑流关联 (Cascade-Correlation)算法起始于最小网络(没有隐含神经元 ) ,然后逐一地往网络里增加新隐含神经元并训练 ,结束于期望性能的获得 .我们提出一种与构造算法 (Constructive Algorithm)相关的快速算法 ,这种算法从适当的初始网络结构开始 ,然后不断地往网络里增加新的神经元和相关权值 ,直到满意的结果获得为止 .实验证明 ,这种快速方法与以往的常规瀑流关联方法相比 ,有几方面优点 :更好的分类性能 ,更小的网络结构和更快的学习速度 . A new method for constructing feedforward neural networks is introduced. The standard Cascade-Correlation Learning is to start with a minimal network (no hidden units), and then train and add new hidden units one by one to the network until desired performance is reached. We propose a fast approach, which corresponds to constructive algorithm, starts with an appropriate network architecture and then grows additional hidden units and weight until a satisfactory solution is found. Experimental result demonstrates that with the fast approach, considerable performance gains are obtained compared to the standard Cascade-Correlation Learning. This includes better classification, smaller network size, and faster learning.
出处 《数学的实践与认识》 CSCD 北大核心 2004年第9期114-118,共5页 Mathematics in Practice and Theory
关键词 自底向上 构造算法 神经网络 权值 学习速度 网络结构 快速算法 神经元 常规 增加 Cascade-Correlation constructive algorithms feedforward neural networks generalization classification backpropagation
  • 相关文献

参考文献15

  • 1Haykin S, Neural Networks. A Comprehensive Foundation[M]. New York: Macmillan, 1994.
  • 2Fletcher R. Practical Methods of Optimization[M]. New York: Wiley, 1990.
  • 3(美)哈根(Hagan,M.T.)等著;戴葵等译.神经网络设计[M].机械工业出版社,2002.9.
  • 4Rumelhart D E, Hinton G E, Williams R J. Learning Internal Representations by Error Propagation[A]. D.E.Rumelhart and J. L. McClelland, Eds. Parallel Distributed Processing: Explanations in the Microstructure of Cognition[C]. Cambridge, MA: MIT Press, 1986, 1: 318-362.
  • 5Kung S, Fallside F, Sorenson J A, Kamm C, Eds. Neural Networks for Signal Processing[C]. Proc. 1992 IEEE Workshop, 1992, Ⅱ: 255-266.
  • 6Guyon I, Wang P S P, Eds. Special issue on neural networks and pattern recognition[J]. Pattern Recognition Artificial Intell, 1993, 7(4): 849-872.
  • 7Friedman J H. An Overview of Predictive Learning and Function Approximation[A]. J. H. Friedman and H.Wechsler, Eds. From Statistics to Neural Networks: Theory and Pattern Recognition Applications, ASI Proc. ,Subseries F[C]. New York: Springer-Verlag, 1994.
  • 8Fahlman S E, Lebiere C. The Cascade-Correlation Learning Architecture[A]. D. S. Touretzky, Ed. Advances in Neural Information Processing Systems[C]. San Mateo, CA: Morgan Kaufmann, 1990, 2: 524-532.
  • 9Reed R. Pruning Algorithms-A Survey[J]. IEEE Transaction on Neural Networks, 1993, 4(5): 740-747.
  • 10Hirose Y, Yamashita K, Hijiya S. Backpropagation algorithm which varies the number of hidden units[J]. Neural Networks, 1991, 4: 61-66.

同被引文献96

引证文献6

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部