期刊文献+

基于小波和ANN的电能质量分类方法 被引量:15

Power quality classification based on wavelet and artificial neural network
下载PDF
导出
摘要 为了对电能质量进行有效的治理,以提高用电效率,有必要对电能质量进行快速的检测和准确的分类.基于小波的时频分析特点和人工神经网络(ANN)的学习能力,提出一种电能质量实用分类方法.利用正交小波对信号进行多分辨率分析,将一定时间长度内的信号的能量映射到多个频段内,通过与标准正弦信号各频段能量的比较,提取各类电能质量的能量变化特征;利用ANN对输入特征矢量进行识别,完成电能质量的自动分类.仿真实验证明,该方法可以有效地区分电压的上升、下降、闪变以及谐波畸变、暂态等5种电能质量问题. To improve the power efficiency, it is necessary to detect the power quality signals sensitively, classify them accurately and clarify them effectively. This paper develops a novel method to classify power quality variations, which combines the aptitude of wavelet transform in analyzing non-stationary signals with the classification capabilities of artificial neural network (ANN). Power quality signals are decomposed with wavelet multi-resolution analysis and the feature vectors are extracted through the coefficients at different levels. Then ANN is used for automatic conversion of the power quality signals the feature vectors. Test results show that this method can effectively classifies voltage swell, voltage sag, voltage flicker, harmonic distortion and transient.
作者 梅雪 吴为麟
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2004年第10期1383-1386,共4页 Journal of Zhejiang University:Engineering Science
关键词 电能质量 人工神经网络 小波变换 Computer simulation Learning algorithms Neural networks Pattern recognition Quality control Signal processing Wavelet transforms
  • 相关文献

参考文献7

  • 1GAOUDA A M, SALAMA M M A, SULTAN M R.Power quality detection and classification using wavelet multi-resolution signal decomposition[J]. IEEE Transactions on Power Delivery, 1999, 14:1469 - 1470.
  • 2DUGAN R C. Electrical power system quality [M]. New York: McGraw-Hill, 1996.
  • 3王宾,潘贞存,徐丙垠.配电系统电压跌落问题的分析[J].电网技术,2004,28(2):56-59. 被引量:130
  • 4杨福生.小波变换的工程分析与应用[M].北京:科学出版社,2001..
  • 5GAOUDA A M, KANOUN S H, SALAMA M M A.Wavelet-based signal processing for disturbance classification and measurement [J]. IEE Proc-Gener Transm Distrib, 2002,149(3) : 310 - 311.
  • 6PARAMESWARIAH C, COX M. Frequency characteristics of wavelets [J]. IEEE Transactions on Power Delivery. 2002,17(3) : 800 - 803.
  • 7张智远,李庚银,冯任卿.基于小波和进化网络的电能质量动态扰动自动识别[J].华北电力大学学报(自然科学版),2002,29(3):1-4. 被引量:7

二级参考文献7

  • 1[1]Santoso S, Power E J, Grady M, et al. Power quality dis turbance waveform recognition using wavelet-based neural classifier: Part 1: Theoretical foundation [J]. IEEE Trans action on Power Delivery, 2000,15 (1): 222-228.
  • 2[2]Santoso S, Power E J, Grady M, et al. Power quality dis turbance waveform recognition using wavelet-based neural classifier: Part 2: Application [J]. IEEE Transaction on Power Delivery, 2000,15 (1): 229-235.
  • 3[3]Santoso S, Powers E J, Grady W M, et al. Power quality assessment via wavelet transform analysis [J]. IEEE Trans action on Power Delivery, 1996,11 (2): 924-929.
  • 4[4]Heydt G T, Galli A W. Transient power quality problems analyzed using wavelets [J]. IEEE Transaction on Power Delivery, 1997,12 (2): 908-915.
  • 5[5]Poisson O, Rional P, Meunier M. New signal processingtools Applied to power quality analysis [J]. IEEE Transaction on Power Delivery, 1999,14 (2): 561-566.
  • 6苏小林,赵铭凯.配电网络优化重构算法[J].电力自动化设备,1997,17(4):15-19. 被引量:1
  • 7刘玲群,肖湘宁.供电电压凹陷域的分析[J].现代电力,2001,18(2):24-31. 被引量:11

共引文献181

同被引文献173

引证文献15

二级引证文献118

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部