期刊文献+

一类非线性系统的模糊变结构控制方案 被引量:2

Fuzzy variable structure control for a nonlinear system
下载PDF
导出
摘要 针对一类特殊非线性系统的模糊变结构控制及稳定性问题,通过将非线性系统化为多个精确T S模型来建立非线性系统精确的T S模糊模型,将模糊理论与成熟的线性变结构控制理论相结合设计出一种模糊变结构控制器,提出了使全局模糊模型稳定的充分条件,并用Lyapunov稳定性理论证明该控制器能确保模糊动态模型全局渐近稳定,从而使非线性系统稳定。仿真结果表明了该设计方法的有效性。 The fuzzy variable structure control of a certain nonlinear system is studied by using T-S fuzzy model, and this kind of controller is proved to be stable. The T-S fuzzy model of a nonlinear system is structured by several exact T-S fuzzy models of nonlinear system. Then the fuzzy variable structure controller is designed by combining fuzzy theory with mature linear variable structure theory. Finally, a sufficient condition is addressed which can make fuzzy dynamic model be globally asymptotically stable, thus the nonlinear system is stable. Simulation results show the validity of the design method.
作者 常玲芳
出处 《系统工程与电子技术》 EI CSCD 北大核心 2004年第10期1462-1463,1494,共3页 Systems Engineering and Electronics
关键词 非线性系统 T-S模糊模型 变结构控制 稳定性 nonlinear system T-S fuzzy model variable structure control stability
  • 相关文献

参考文献5

  • 1Tanaka K, Sugeno M. Stability Analysis and Design of Fuzzy Control Systems[J]. Fuzzy Sets and Systems, 1992, 45:135 - 156.
  • 2Cao S G,Rees NW,Feng G. Stability Analysis and Design for a Class of Continuous-Time Fuzzy Control Systems[J]. Int J. Control, 1996,64:1069 - 1087.
  • 3Cao S G, Rees N W, Feng G. Analysis and Design for a Class of Complex Contral System-Part I: Fuzzy Modelling and Identificatien[J]. Automatica, 1997, 33: 1017-1028.
  • 4Tanaka K, Sugeno M. Fuzzy Stability Criterion of a Class of Nonlinear Systems[J]. Information Science, 1993, 70: 3-26.
  • 5Ho Jae Lee, Jin Bae Park, Guangrong Chen. Robust Fuzzy Control of Nonlinear Systems with Parametric Uncertainties[J]. IEEE Trans. On Fuzzy Syst., 2001, 9: 369-379.

同被引文献29

  • 1ANTSAKLIS P, BAILLIEUL J. Special issue on net- worked control systems[J]. IEEE Transactions on Automatic Control, 2004, 49(9): 1424-1 603.
  • 2BUSHNELL L G. The special section on networks and control[J]. IEEE Control System Magazine, 2001, 21(1): 122-185.
  • 3ZHANG W, BRANICKY M S, PHILIPS S M. Stabil- ity of networked control systems[J]. IEEE Control System Magazine 2001 21(1)" 84-99.
  • 4YUE Dong, HAN Qian-long, LAM J. Network-based robust Ho control of systems with uncertainty[J]. Automatica, 2005, 41(6): 999-100 7.
  • 5Wu Jun CHEN Tao. Design of networked control systems with packet dropoutsIJ]. IEEE Trans Auto- matic Controls 2007 52(7): 1 314-1319.
  • 6Yu Min, WANG Liang, CHU Tong. Sampled-data stabilization of networked control systems with non- linearity[J]. IEEE Proc Control Theory Appl 2005, 152(6): 609-614.
  • 7BATTILOTTI S. Control over a communication chan- nel with random noise and delays[J]. Automatic, 2008, 41(2): 348-360.
  • 8TAKAGI T, SUGENO M. Fuzzy identification of sys- tems and its application to modeling and control[J]. IEEE Trans on Systems, Man and Cybernetics, 1985, 15(1): 116-132.
  • 9LIN Y C, Lo J C. Exponential stability of filtering problems for delay fuzzy systemsIC/OL]// Proceedings of the 2004 IEEE International Confer- ence on Networking, Sensing and Control, Taipei, March 21-23, 200412011-12-201. http://ieeexplore. ieee.org/stamp/stamp.jsp?tp=&arnumber= 1297071.
  • 10ZHANG H G, LUN S X, LIU D. bhlzzy Ha filter de- sign for a class of nonlinear discrete-time systems with multiple time delays[J]. IEEE Trails Fuzzy Syst, 2007, 15(3): 453-469.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部