期刊文献+

2H-SiC体材料电子输运特性的EMC研究

Ensemble Monte Carlo study of electron transport in bulk 2H-SiC
下载PDF
导出
摘要 目的 对2H SiC体材料的电子输运特性进行研究。方法 在最新能带结构计算的基础之上,采用非抛物性能带模型和多粒子蒙特卡罗(EnsembleMonteCarlo,EMC)方法。结果 计算表明:低场下,温度一定时,2H SiC纵向电子迁移率比4H SiC和6H SiC都高,横向迁移率则较为接近。296K时,由EMC方法得到的纵向电子饱和漂移速度为2.2×107cm/s,横向电子饱和漂移速度为2.0×107cm/s。当电场条件相同时,2H SiC同4H SiC以及6H SiC中的纵向电子平均能量相差较大。在阶跃电场强度为1000kV/cm时,其横向瞬态速度峰值可达到3.2×107cm/s,反应时间仅为百分之几皮秒量级。结论 可以被用来设计SiC器件和电路。 AimTo study the electron transport properties in 2H-SiC.MethodsIt is disscussed by an Ensemble Monte Carlo technique with an nonparabolic band model from a new ab initio band structures calculation.ResultsThe computation shows that the low field mobility in the C axis direction is higher than 6H-SiC and 4H-SiC. But in the direction perpendicular to the C axis,the mobilities are comparable. At 296 K,the peak saturation velocities given by the model are 2.2×10~7cm/s and 2.0×10~7cm/s when the electric field is applied parallel and perpendicular to the C axis respectively. The difference in mean energy for E‖C among these three kinds of α-SiC is large. The peak transient velocity for E⊥C at high electric field pulse such as 1 000 kV/cm is 3.2×10~7 cm/s. The response time is only in deep subpicoseconds.Conclusion The results can be used to design SiC device and circuit.
出处 《西北大学学报(自然科学版)》 CAS CSCD 北大核心 2004年第5期541-544,548,共5页 Journal of Northwest University(Natural Science Edition)
基金 教育部重点资助项目(02074) 国防科技预研基金资助(51408010601DZ1032)
关键词 2H-SiC 多粒子蒙特卡罗研究 迁移率 漂移速度 平均能量 2H-SiC ensemble Monte Carlo study mobility drift velocity mean energy
  • 相关文献

参考文献12

  • 1[1]SIERGIEJ R R,CLARK R C,SRIRAM S.Advances in SiC materials and devices: an industrial point of view[J].Mater Sci Eng(B),1999,61-62(1):1-8.
  • 2[2]MICKEVICIUS P,ZHAO J H.Monte Carlo study of electron transport in SiC[J].J Appl Phys,1998,83(6):3 161-3 167.
  • 3[3]NILSSON H E,SANNEMO U,PETERSSON C S. Monte Carlo simulation of electron transport in 4H-SiC using a two-band model with multiple minima[J].J Appl Phys,1996,80(6):3 165-3 169.
  • 4[4]NILSSON H E,HJEMLM M,PETERSSON C S. Full band Monte Carlo simulation of electron transport in 6H-SiC[J].J Appl Phys,1999,86(6):965-973.
  • 5[6]PERSSON C,LINDEFELT U. Relativistic band structure calculation of cubic and hexagonal SiC polytypes[J].J Appl Phys,1997,82(11):5 496-5 507.
  • 6叶良修.小尺寸半导体器件的Monte Carlo模拟[M].北京:科学出版社,1997.342-383.
  • 7[8]JACOBONI C,NAVA F,CANALI C.Electron drift and diffusivity in germanium[J].Phys Rev(B),1981,24(8):1 014-1 026.
  • 8[9]HARRIS G. Properties of Silicon Carbide[M].London:Inspec,1995. 3-100.
  • 9[10]CHOYKE W J,MATSUNAMI H.Silicon Carbide:A Review of Fundamental Questions and Applications to Current Device Technology[M].Berlin :Akademie Verlag,1997.5-70.
  • 10[11]LEVINSHTEIN M E,RUMYANTSEV S L,MICHAEL S S.Properties of Advanced Semiconductor Materials[M].New York :John Wiley & Sons,2001. 93-149.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部