期刊文献+

限制搜索区域的距离最短路径规划算法 被引量:27

A Route Planning Algorithm for the Shortest Distance Within a Restricted Searching Area
下载PDF
导出
摘要 提出一种时间复杂度为O(n)的限制搜索区域距离最短路径规划算法(n为路网节点数).算法设计的基础是,经典Dijkstra算法搜索时的无方向性及实际城市道路网络特有的空间分布特性.算法实现采用邻接表数据结构和限制搜索区域的搜索机制,即利用实际城市道路网络的空间分布特性,合理限制算法的搜索区域.结合路径规划算法在实时车辆导航系统中的实际应用,给出了该算法的应用实例,实验结果表明,该算法能将路网中任意两点间的最短路径解算时间控制在3s以内. A route planning algorithm for the shortest distance in a restricted searching area, with a time complexity O(n) is proposed (n being the number of nodes in the road net). The foundation of the algorithm is that the classical Dijkstra algorithm has no directional feature during the search, and that a real city road net has its particular spatial distribution features. The algorithm takes advantage of the adjacent list data structure and the mechanism of restricted searching area, that is, the algorithm uses the spatial distribution feature of the real road network to restrict the searching area reasonably. Combining with its practical applications in real-time vehicle navigation system. An actual example is given, and the experimental results showed the time of calculation for the shortest path between any two points within the road networks can be restricted within 3 seconds by the new algorithm.
出处 《北京理工大学学报》 EI CAS CSCD 北大核心 2004年第10期881-884,共4页 Transactions of Beijing Institute of Technology
基金 国家部委预研项目(2040501)
关键词 车辆导航系统 路径规划 道路网络 限制搜索区域 vehicle navigation system route planning road net restricted searching area
  • 相关文献

参考文献3

  • 1Dijkstra E W. A note on two problems in connection with graphs[J]. Numerical Mathematics, 1959(1): 269-271.
  • 2付梦印,李杰,周培德.Design and Implementation of Bidirectional Dijkstra Algorithm[J].Journal of Beijing Institute of Technology,2003,12(4):366-370. 被引量:5
  • 3Solka L, Perry C, Poellinger R. Fast computation of optimal paths using a parallel Dijkstra algorithm with embedded constraints[J]. Neurocomputing, 1995(8): 195-212.

二级参考文献4

共引文献4

同被引文献142

引证文献27

二级引证文献90

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部