期刊文献+

热带气旋路径人工神经元预报方法对比试验研究 被引量:16

AN EXPERIMENTAL STUDY ON ARTIFICIAL NEURAL NETWORK FORECASTING MODELS OF TROPICAL CYCLONE PATH
下载PDF
导出
摘要 分别对具有动量项BP、LM、RBF人工神经网络建立36、48、60、72小时的热带气旋路径预测模型,各用100个独立样本进行预测检验,分析了网络“学习好,预报差”的原因,解决这一问题的关键是选择合适的网络结构参数、相应的学习算法和合适的预报因子,并总结了合理应用人工神经网络建立预测模型的经验。针对人工神经网络模型不具有自动选取因子的功能,给实际应用造成困难,提出了基于RBF的逐步选取因子的算法,并进行了对比试验,表明该方法具有较高的实用价值。 Based on BP, LM, RBF artificial neural network with a term of momentum, forecasting models for tropical cyclone path of 36, 48, 60 and 72 hours are set up, and run with 100 independent samples. The results show that the models with good fitting generally produce bad forecast. The keys to avoid this embarrassing situation are proper parameters for network structure, corresponding algorithm and suitable predictors. In view of the fact that artificial neural network models lack the mechanism of automatic predictor adaptation, an algorithm of stepwise predictor adaptation of RBF model is proposed in this study. The comparison with the other models shows that the suggested algorithm is worth to be tried in routine forecasting operation.
出处 《热带气象学报》 CSCD 北大核心 2004年第5期523-529,共7页 Journal of Tropical Meteorology
基金 浙江省自然科学基金(400038)资助
关键词 热带气旋路径 人工神经元网络 逐步算法 tropical cyclone path artificial neural network stepwise algorithm
  • 相关文献

参考文献4

  • 1蒋乐贻.热带气旋路径人工神经网络预报方法[A].第十一届全国热带气旋科学年会[C].1999,101-105.
  • 2韩桂荣, 等. 人工神经网络台风预报系统及应用分析[A]. 第十一届全国热带气旋科学年会文集[C]. 北京: 中国气象学会第24届天气与极地气象学委员会, 1999. 180-180.
  • 3胡江林,涂松柏,冯光柳.基于人工神经网络的暴雨预报方法探讨[J].热带气象学报,2003,19(4):422-428. 被引量:31
  • 4曹鸿兴,谷湘潜,封国林.气象中的自记性与人工智能[A].气科学发展战略.中国气象学会第25次全国会员代表大会暨学术年会论文集[C].气象出版社,2002,187-191.

二级参考文献5

  • 1王繁强,徐文金,陈杰伦,王莘.B-P算法在青海省降雨分区分级预报中的应用[J].高原气象,1997,16(1):105-112. 被引量:9
  • 2胡江林.神经网络模型用于湖北省月降水量预报的探讨[J].暴雨.灾害,1999,(1):36-41.
  • 3俞康庆 胡江林 王登炎等.武汉区域中心暴雨数值预报模式(MAPS)的业务试验[A]..台风暴雨数值预报方法和技术研究[C].北京:气象出版社,1996.572-580.
  • 4BAlK J J, HWANG H S. Tropical cyclone intensity prediction using regress method and neural network[J]. J Meteor Soc Japan, 1998, 76: 711-717.
  • 5ROBERT J K, BARROS A P. Experiments in short-term precipitation forecasting using artificial neural networks[J]. Mon Wea Rev, 1998, 126: 470-482.

共引文献33

同被引文献174

引证文献16

二级引证文献80

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部