期刊文献+

用格林函数法计算量子点中的应变分布 被引量:1

The calculation of strain distribution in quantum dots with Green method
原文传递
导出
摘要 自组装量子点材料作为一种新型的光电材料无论在理论和实际应用都成为当今物理学界的研究热点 .由GaAs包围的InAs小岛 ,由于较大的晶格失配 (≈ - 0 0 6 7) ,应变效应在量子点的形成过程中起主导作用 .大部分计算量子点结构应变分布的方法都是基于数值解法 ,需要大量的计算工作 .给出用格林函数法推导各种常见形状量子点应变分布的解析表达式详细过程 ,讨论了弹性各向异性和形状各向异性对量子点应变分布的影响程度 .结果表明对于不同形状量子点结构中主要部分的应变分布都是相似的 。 There is considerable interest in the study of self_assembled quantum dots as one of the new optoelectronic materials in the field of physics. It is interesting in theory, and also applications. In this article, we consider the InAs islands buried in GaAs, because of large lattice mismatch (≈-0.067), which makes strain effect to be the main factor in the formation of quantum dots. Most methods for calculations of strain distribution are based on the numerical solution of quantum dots structures, which need heavy calculations work. We present a detailed process to derive an analytical formula for the strain distribution in some familiar shapes of quantum dots with Green function method, and discuss their influence on the strain distribution in quantum dots by taking into account the anisotropy of elastic properties and shape. The results showed that the strain distributions in the major part of the quantum dot structure are very similar for different shapes and that the characteristic value of the hydrostatic strain component depends only weakly on variation of the shape of quantum dots.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2004年第10期3487-3492,共6页 Acta Physica Sinica
基金 教育部优秀青年教师基金 黑龙江省留学回国基金 (批准号 :LC0 1C11) 国家自然科学基金 (批准号 :90 2 0 10 0 3 )资助的课题~~
关键词 量子点材料 格林函数法 计算量 特征值 物理学 解析表达式 计算工作 晶格失配 光电材料 应变效应 self_assembled quantum dots, Green function, strain distribution
  • 相关文献

参考文献14

  • 1[1]Marin J Y and Bastard G 1994 Solid State Commun. 91 39
  • 2[2]Bimberg D, Grundmann M and Ledentsov N N 1998 Quantum Dot Heterostructures (John Wiley & Sons, UK)
  • 3[3]Feng D H, Jia T Q and Xu Z Z 2003 Chin. Phys. 9 1016
  • 4[4]Grundmann M, Stier O and Bimberg D 1995 Phys. Rev. B 54 11969
  • 5[5]O'Reilly E P 1989 Semicond. Sci. Technol. 4 121
  • 6[6]O'Reilly E P and Adams A R 1994 IEEE J. Quantum Electron. 30 366
  • 7[7]Benabbas T, Francois P, Androusi Y and Lefebvre A 1996 J. Appl. Phys. 80 2763
  • 8[8]Cusack M A, Briddon P R and Jaros M 1996 Phys. Rev. B 54 R2300
  • 9[9]Lifshifts I M and Rosentsverg L N 1947 Zh. Eks. Teor. Tiz. 17 9 (in Russian) [Sov. Phys. JETP]
  • 10[10]Andreev A D, Downes J R, Faux D A and O'Reilly E P 1999 J. Appl. Phys. 86 297

同被引文献15

  • 1李良新,胡勇华.可用于红外探测器的自组织量子线及其带间和子带间光学跃迁[J].物理学报,2005,54(2):848-856. 被引量:1
  • 2Zhang J F,Hao Y 2006 Chin.Phys.15 2402.
  • 3Park S H,Chuang S L 2000 Appl.Phys.Lett.76 1981.
  • 4Gmachl C,Ng H M,S.Chu N G,Cho A Y 2000 Appl.Phys.Lett.77 3224.
  • 5Saito H,Nishi K,Sigou S 2001 Appl.Phys.Lett.78 267.
  • 6Ramval P,Tanaka S,Nomura S,Riblet P,Aoyagi Y 1998 J.Appl.Phys.Lett.73 1104.
  • 7Widmann F,simon J,Daudin B,Feuillet G,Rouviere J L,Pelekanos N T.Fishman G 1998 Phys.Rev.B 58 15989.
  • 8Miyamura M,Tachibana K,Arakawa Y 2002 Appl.Phys.Lett.80 3937.
  • 9Lu Y,Sun G 2004 13th International Conference on Semicondueting and Insulating Materials,Beijing,20-25 September 2004,p284.
  • 10de Rinaldis S,D'Amico I,Biolatti E,Rinaldi R,Cingolani R,Rossi F 2002 Phys.Rev.B 65 081309.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部