期刊文献+

确定分形无标度区的有效算法(英文) 被引量:1

EFFICIENT SCHEME FOR DETERMINING FRACTAL SCALELESS RANGE
下载PDF
导出
摘要 分形地貌的分维模型能够充分反映地形的统计纹理特征 ,利用分形内插能从低分辨率的卫星或航空照片高程数据获取高分辨率的高程数据 ,达到较理想的建模效果 .而分形模型中无标度区的确定直接影响到分形特征参数的求解和DEM建模质量的好坏 ,常用方法是采用人机交互试验来选取无标度区 ,缺乏客观标准 .本文提出一种自动确定无标度区的方法 ,实验结果表明 ,该方法在DEM自动建模过程中是简洁、有效的 . The terrain model based on fractal character can sufficiently represent the statistical texture features of the terrain. Better model and higher resolution DEM ( Digital Elevation Model) data can be obtained from the lower resolution data by using fractal interpolation. The determination of fractal scaleless range is very important for computing the fractal characteristic parameters and modeling the digital elevation. The traditional method for determining the fractal scaleless range usually adopts the mutual test between people and compute. However, this method tends to be too subjective. Hence, we offer an auto - determining method, which has been proved to be concise, effective and efficient by experimental results.
出处 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2004年第5期321-324,共4页 Journal of Infrared and Millimeter Waves
基金 TheprojectsupportedbytheNationalNaturalScienceFoundationofChina( 6990 5 0 0 3 )
关键词 维模型 有效算法 纹理特征 分形 人机交互 标度 建模 DEM 地貌 地形 digital elevation model (DEM) fractional Brownian motion (FBM) scaleless range
  • 相关文献

参考文献6

  • 1Pentland A. Fractal-based description of natural scenes[J], IEEE trans. Pattern Anal. Mach. Intell., 1984, 6(6): 661-674.
  • 2Pumar M A. Zooming of terrain imagery using fractal-basesd interpolation[J], Computers & Graphics, 1996, 20(1): 171-176.
  • 3Arakawa K, Krotkov E. Fractal modeling of natural terrain: analysis and surface reconstruction with range data[J], Gaphical Models and Image Processing, 1996, 58(5): 413-436.
  • 4Yokoya N, Yamamoto K, Funakubo N. Fractal-based analysis and interpolation of 3D natural surfaces and their applications to terrain modeling[J], Comput. Vision Graphics Image Process., 1989, 46: 284-302.
  • 5Mandelbrot B B. The Fractal Geometry of Nature[M], San Francisco: Freeman, 1982.
  • 6Li Houqian, Wang Fuquan. Fractal Theory and Application in Molecule Science[M], Beijing:Science Press, 1993: 179-184.

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部