期刊文献+

Fourier-Laplace级数的强逼近(英文) 被引量:1

Strong Approximation by Fourier-Laplace Series in L∞-norm
下载PDF
导出
摘要 设f是Rn(n≥3)中单位球面∑n-1上的可积函数,Sθ(f)是步长为θ ∈ R的平移算子. σNδ(f)是Fourier-Laplace级数的δ阶Cearo平均.如果,则,其中Eκλ(f)为Cesaro平均σκλ的等收敛算子. Let f be an integrable function on the unit sphere∑n-1 of Rn (n ≥3) and let SσNδ(f) be the translation operator with step δ ∈R. Let σNδ (f) be the Cesaro means of order S of the Fourier Laplace series of f. This paper proves that if, then and,where Eκλ(f) is the equiconvergent operator of Cesaro means σκλ?
作者 张希荣 戴峰
出处 《数学进展》 CSCD 北大核心 2004年第5期626-630,共5页 Advances in Mathematics(China)
基金 Project supported by the Natural Science Foundation of China(No. 19971009).
关键词 强逼近 FOURIER-LAPLACE级数 Cesáro平均 等收敛算子 strong approximation Fourier-Laplace series,Cesaro means equiconvergent operator
  • 相关文献

参考文献8

  • 1[1]Bonami A, Clerc J L. Sommes de Cesaro et multiplicateurs des developpments en harmonique sphériques[J]. Trans. AMS., 1973: 183-223.
  • 2[2]Dang Vu, Giang, Moricz F. Strong approximation by Fourier transform and Fourier series in L∞-norm [J].J. Appr. Theory., 1995, 83: 157-174.
  • 3[3]Szego G. Orthogonal Polynomials, Vol 23. Colloquim: AMS Colloquim Publication, 1939.
  • 4[4]Wang Kunyang. Equiconvergent operator of Cesaro means on sphere and its application [J]. J. Beijing Normal Univ. (NS)., 1993, 29: 143-153.
  • 5[5]Pitt H R. Theorems on Fourier series and power series [J]. Duke Math., J., 1937, 3: 747-755.
  • 6[6]Miller C. Spherical Harmonics [C]. Lecture Notes in Math., 1966, 17:
  • 7[7]Wang Kunyang, Li Luoqing. Fourier Analysis and Approximation on the Sphere[M]. Beijing: Science Press,1999.
  • 8[8]Brown G, Wang Kunyang. Jacobi polynomial estimates and Fourier-Laplace convergence [J]. J. Fourier Anal. and Appl., 1997, 3: 705-704.

同被引文献12

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部