摘要
设f是Rn(n≥3)中单位球面∑n-1上的可积函数,Sθ(f)是步长为θ ∈ R的平移算子. σNδ(f)是Fourier-Laplace级数的δ阶Cearo平均.如果,则,其中Eκλ(f)为Cesaro平均σκλ的等收敛算子.
Let f be an integrable function on the unit sphere∑n-1 of Rn (n ≥3) and let SσNδ(f) be the translation operator with step δ ∈R. Let σNδ (f) be the Cesaro means of order S of the Fourier
Laplace series of f. This paper proves that if, then and,where Eκλ(f) is the equiconvergent operator of Cesaro means σκλ?
出处
《数学进展》
CSCD
北大核心
2004年第5期626-630,共5页
Advances in Mathematics(China)
基金
Project supported by the Natural Science Foundation of China(No. 19971009).