期刊文献+

时序Rough逻辑及其在数据分析中的应用

Temporal Rough Logic and Its Applications in Data Analysis
原文传递
导出
摘要 提出一种时序Rough逻辑,定义了时序算子及其作用于Rough逻辑公式上的意义.描述了这种逻辑的语法和语义.论述了时序Rough逻辑中的语义模型是一个无限状态序列,其中每一状态都描述了当前时刻和场景点上信息系统的信息.从当前状态到下一状态的变换是遵循时序Rough逻辑演算的,它必须保持知识不变,也就是属性和讨论的对象不变,而属性关于对象的特征值,即属性值随着时间和场景变化而可以变化.因此,在信息系统上作决策、数据约简和信息粒化等都将产生影响,由此可见时序Rough逻辑将是动态地处理信息系统的理论工具,也将是合理地解决和处理不一致信息表的较好方法. A temporal Rough logic is proposed. Temporal operators are defined, they are used in Rough logical formula, that Rough logical formula has new significance. Syntax and semantics of the logic are also described. Semantics model of the logic is any infinite state-sequence, where each state shows the information on IS in point and time at present. The changing from the state at present into next state obey the calculus in temporal Rough logic, it must keep no change of knowledge, namely, attributes and objects no change, but the values of attributes may change according to difference in point and time. Hence, the making decision, data reduction and information granulating on IS are changed. It follows that temporal Rough logic will be a theoretical tool to handle information systems dynamically. Which will also be better approach to solve and handle inconsistent decision table suitably.
作者 刘清
出处 《复旦学报(自然科学版)》 CAS CSCD 北大核心 2004年第5期852-855,共4页 Journal of Fudan University:Natural Science
基金 国家自然科学基金资助项目(60173054) 江西省自然科学基金资助项目(0311101)
关键词 时序 数据约简 信息粒 场景 语义模型 对象 属性值 逻辑演算 特征值 算子 information system Rough logic temporal operators granulating temporal Rough logic
  • 相关文献

参考文献13

  • 1Pawlak Z. Rough logic[J]. Bull of Polish Acad of Sci, 1987, 35(5-6): 253-259.
  • 2Pawlak Z. Rough sets-theoretical aspects of reasoning about data[M]. Dordrecht: Kluwer Academic Publishers, 1991.
  • 3Orlowska E. A logic of indiscernibility relation[A]. In: Skowron A,ed. Computation theory, lecture notes in computer science 208[M]. Heidolberg: Physics-Verlag, 1985. 177-186.
  • 4Nakamura A. A rough logic based on incomplete information and its applications[J]. International Journal of Approximate Reasoning, 1996, 15: 367-378.
  • 5Nakamura A. Graded modalitiesin rough logic[A]. In: Polkowski L, Skowron A, eds. Rough sets knowledge discovery[M]. Heidelberg: Physics-Verlag, 1998. 192-208.
  • 6Manna Z. Verification of Sequential Programs: Temporal Axiomatization[A]. In:Broy M,Schmidt G,eds. Theoretical foundations of programming methodology[C]. Dordrecht, Holland:D Reidel Publishing Company, 1982. 53-102.
  • 7Lin T Y, Liu Q. First-order Rough logic I: Approximate reasoning via Rough sets[J]. Fundamenta Informaticae, 1996, 27(2-3): 137-154.
  • 8Lin T Y, Liu Q. First order Rough logic-revisited[M]. Berlin: Springer, 1999. 276-284.
  • 9Yao Y Y,Liu Q. A generalized decision logic in interval-set-valued information table[M]. Berlin: Springer, 1999. 285-294.
  • 10Synak P. Temporal templates and analysis of time related data [M]. Berlin: Springer, 2000. 420-427.

二级参考文献6

共引文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部