期刊文献+

基于小波纹理分析的隐写分析研究(英文) 被引量:1

Steganalysis Techniques Based on Wavelet Texture Analysis
原文传递
导出
摘要 提出一种基于模型的隐写分析技术.图像的小波子带分解系数纹理可以建模为两参数广义高斯分布.同时采用极大似然方法进行两个参数的估计.分析发现隐写将改变图像的纹理特性,从而可以从子带分布模型参数的变化中判断是否隐藏信息.采用神经网络、支持向量机,回归分析和费歇尔判别分析分别进行比较验证.试验结果表明方法的有效性,同时对各分类器的性能进行了评价. A novel steganalysis technique based on model is presented. The key element of the method is wavelet coefficients in each sub-band of wavelet transform are modeled as a Generalized Gaussian distribution (GGD) with two parameters. These two parameters of each subband coefficients are obtained by the maximum-likehood estimator. It appears that these parameters are a good measure of image features and can be used to discriminate stego-images from cover images. Neural network, SVM (support vector machine), regression analysis are adopted to train these parameters to get the inherent characteristic of cover and stego images. Experimental results show that the algorithm is comparable to previously existing techniques. And this method is a general steganalysis method which is applicable for the detection of data hiding and watermarking techniques.
出处 《复旦学报(自然科学版)》 CAS CSCD 北大核心 2004年第5期910-913,共4页 Journal of Fudan University:Natural Science
关键词 隐写分析 纹理分析 分类器 小波 支持向量机 子带分解 神经网络 广义高斯分布 波纹 图像 steganalysis texture analysis machine learning pattern recognition
  • 相关文献

参考文献9

  • 1Fabien A P, Anderson R J, Markus G K. Information hiding-a survey [J]. Proceedings of the IEEE, 1999, 7(7): 1062-1078.
  • 2Johnson N F , Jajodia S. Steganalysis of images created using current steganography software [A]. In: Aucsmith D,ed. Information hiding: Second international workshop (IH'98) [C]. Heidelberg: Springer-Verlag,1998. 273-289.
  • 3Fridrich, J, Goljan M. Practical steganalysis of digital images - State of the art [A]. In: Delp E J, Wong P W,eds. Proceedings of SPIE Vol. 4675:Security and Watermarking of Multimedia Contents IV [C]. Washington : The International Society for Optical E
  • 4Farid H, Lyu S. Higher-order wavelet statistics and their application to digital forensics [A]. In: Terrance E B, ed. IEEE workshop on statistical analysis in computer vision [C]. Wisconsin: IEEE Computer Society. 2003. 1-8.
  • 5Avciba I, Memon N, Bulent S. Steganalysis using image quality metrics [J]. IEEE Transaction on image processing, 2003, 12(2):221-229.
  • 6Phil S. Model-based steganography [A]. In: Kalker T, Cox I J, Ro Yong Man,eds.Proceedings of International workshop digital watermarking [C]. Heidelberg: Springer-Verlag, 2003. 154-167.
  • 7Yuan H, Zhang X F. Fragile watermark based on the Gaussian mixture model in the wavelet domain for image authentication [A]. In: Torres L,ed. Proceedings of ICIP 2003 [C]. Barcelona: IEEE Signal Processing Society, 2003. 505-508.
  • 8Minh N D, Martin V. Wavelet-based texture retrieval using generalized Gaussian density and Kullback-Leibler distance [J]. IEEE transaction on image processing, 2002, 11(2): 146-158.
  • 9Yuan Q, Yao H X, Gao W, et al. Blind watermarking method based on DWT middle frequency pair[A]. In: Murar K, Pascal F, eds. Proceeding of IEEE ICME [C]. Lausanne: IEEE Signal Processing Society. 2002. 473-476.

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部