期刊文献+

半正定矩阵广义Schur补的几个不等式 被引量:5

Some inequalities involving generalized Schur complements of positive semidefinite matrices
下载PDF
导出
摘要 利用半正定矩阵的性质和矩阵Moore Penrose广义逆的特性,研究了半正定矩阵乘积及Hadamard积的广义Schur补的L wner偏序问题,得到了关于广义Schur补的若干不等式.对半正定矩阵A和B,给出了其Hadamard积广义Schur补与A/α B/α的关系,并对形如C AC(其中A半正定)的矩阵乘积,证明了(C AC)(β′)≥C (β′,α′)A/α·C(α′,β′)及(C AC)/α≤C /α·A(β′)·C/α. Several inequalities in the lwner partial ordering involving product and Hadamard product are presented by using the properties of positive semidefinite matrices and their Moore-Penrose generalized inverse. For positive semidefinite matrices A and B, the relationship between (AB)/α and A/αB/α is studied. Furthermore, for matrix product of the from C~*AC where A is positive semidefinite, it′s proved that (C~*AC)(β′)≥C~*(β′,α′)A/α·C(α′,β′) and (C~*AC)/α≤C~*/α·A(β′)·C/α.
出处 《陕西师范大学学报(自然科学版)》 CAS CSCD 北大核心 2004年第3期25-27,共3页 Journal of Shaanxi Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(10071047)
关键词 半正定矩阵 广义SCHUR补 HADAMARD积 矩阵乘积 不等式 偏序 MOORE-PENROSE广义逆 证明 性质 Moore-Penrose generalized inverse Lwner partial order generalized Schur complement
  • 相关文献

参考文献5

  • 1Albert A. Conditions for positive and nonnegative definiteness in terms of pseudoinverse[J]. SIAM Journal of Applied Mathematics, 1969,17: 434-440.
  • 2Zhang Fuzhen. Matrix theory: Basic results and techniques[M]. New York: Springer-Verlag, 1999.
  • 3Liu Jianzhou, Wang Jian. Some inequalities for Schur complements[J ]. Linear Algebra and It's Application,1999, 293: 233-241.
  • 4Thomas L Markham, Ronald L Smith. A Schur complement inequality for certain P-matrices [ J ]. Linear Algebra and It's Application, 1998, 281: 33-41.
  • 5王伯英,张秀平.广义Schur补的L■wner偏序和特征值不等式[J].北京师范大学学报(自然科学版),1998,34(4):441-444. 被引量:3

二级参考文献2

  • 1王伯英,SIAM J Matrix Anal Appl,1995年,16卷,4期,1173页
  • 2杨忠鹏,半正定的Hemitian矩阵的广义Schur补的Lowener偏序和特征值

共引文献3

同被引文献38

  • 1周金华,王国荣.广义Schur补与Khatri-Rao积(英文)[J].上海师范大学学报(自然科学版),2006,35(1):22-26. 被引量:2
  • 2余剑春,骆洪才.一个矩阵不等式的推广[J].湘南学院学报,2007,28(2):24-26. 被引量:3
  • 3张其亮.数学教育的本质研究[J].大学数学,2007,23(3):1-4. 被引量:3
  • 4Bo- Ying Wang, Xiuping Zhang, Fuzhen Zhang.Some inequalities on generalized Schur complement. Linear Algebra Appl.1999,302-303:163 - 172.
  • 5M.Redivo-Zaglia,Pseudo-Schur Complements ad Their Properties.Applied Numerical Mathematics.50(2004)511 - 519.
  • 6Albert A. Conditions for Positive and Nonnegative Definiteness interms of Pseudo Inverse[J].SIAM Journal of Applied Mathematics, 1969,17:434-440.
  • 7Hom RA,Mathias R.Block-matrix Generalization of Schur's basic Theorems on Hadamard Products.Linear Algebra Appl.,1992,172: 337 - 346.
  • 8Jürgen Grop.L(o)wner partial ordering and space preordering of Hermitiannon-negative definite matrices[J].Linear Algebra and its Applications,2003,397:215-223.
  • 9Wang Boying,Zhang Xiuping.Some inequalities on generalized schur complements[J].LinearAlgebra and its Applications,1999,302/303:163-172.
  • 10王松桂.矩阵不等式[M].北京:科学出版社.2006:33-36.

引证文献5

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部