期刊文献+

胶质瘤脑脊液蛋白指纹图质谱仪分析及其在临床诊断中的应用 被引量:3

Fingerprint pattern analysis of glioma CSF protein with mass spectrometry and its clinical significance
原文传递
导出
摘要 目的建立区分胶质瘤和非肿瘤脑脊液的蛋白指纹图诊断模型,利用蛋白组学技术寻找新的肿瘤标志物。方法收集胶质瘤和轻中度脑外伤病人(共46份)的脑脊液,利用表面加强解析/电离吸收-时间飞行质谱(surface-enhancedlaserdesorption/ionizationtime-of-flightmassspectrometry,SELDI-TOF-MS)检测蛋白芯片,得出蛋白指纹图,将46份标本随机分为训练组30例(12例胶质瘤,18例脑外伤)和盲法测试组16例(7例胶质瘤,9例脑外伤),运用Ciphergen公司提供的BiomarkerPatternsTM Software(一种决策树软件)分析收集的数据。结果(1)得到胶质瘤与非肿瘤的蛋白指纹图;(2)利用训练集得出基于决策树的脑脊液蛋白模型,测试集盲法检测,胶质瘤诊断的敏感性和特异性分别为100%(8/8)和88.9%(8/9)。结论建立了胶质瘤的脑脊液蛋白指纹图谱,为以后的胶质瘤蛋白质组学研究奠定了一定基础;建立了区分胶质瘤与非肿瘤的脑脊液蛋白表达质谱诊断模型,盲法检验敏感性和特异性达到100%和88.9%,为胶质瘤的临床诊断提供了一条崭新的途径和方法。 Objective To develop and evaluate a diagnostic model of cerebrospinal protein fingerprint pattern for distinguishing gliomas from non-brain-tumors; to screen the new tumor biomarkers by proteomic technology. Methods Forty-six cerebrospinal samples from gliomas and non-brain-tumors(mild brain traumas) were collected .The peptide maps of these patients were detected by surface-enhanced laser desorption/ionization time-of-flight mass spectrometry(SELDI-TOF-MS).The samples were randomly divided into training set(n=30) and test sets(n=16)and the collected data were analyzed with Biomarker PatternsTM Software provided by Ciphergen Inc.(a software of decision tree algorithms). Results The protein fingerprints of glioma and non-brain-tumor were set up by Ciphergen ProteinChip Software 3.0(Ciphergen), the diagnostic model of cerebrospinal protein profiling for separating gliomas from non-brain-tumors was developed using Biomarker Patterns 3.1 Software(a decision tree algorithm), then the model was challenged with the test set randomly, the sensitivity and specificity were 100% and 88.9% respectively. Conclusions We have developed a cerebrospinal protein fingerprint of glioma for the proteomic fundamental study for glioma, moreover we have yielded a diagnostic model of the protein profiling for distinguishing gliomas from non-brain-tumors, then the diagnostic model was cross-validated blindly, and the sensitivity and specificity were 100% and 88.9% respectively. It has provided a new approach in clinical diagnosis of glioma.
出处 《中华神经外科杂志》 CSCD 北大核心 2004年第5期362-366,共5页 Chinese Journal of Neurosurgery
基金 国家重点基础研究项目(973) G1998051200
关键词 胶质瘤 脑脊液蛋白 肿瘤 盲法 脑外伤 临床诊断 指纹图 训练 伤病 收集 SELDI-TOF Decision tree Protein fingerprint Glioma Diagnosis
  • 相关文献

参考文献18

  • 1Kandel ER, Schwartz JH, Jessell TM. Jessell principles of neural scince. 4ed. Chicago: The University of Chicago Press, 2001.
  • 2Srinivas P R, Srivastava S, Hanash S, et al. Proteomics in early detection of cancer. Clin Chem, 2001, 47: 1901-1911.
  • 3Ball G, Mian S, Holding F, et al. An integrated approach utilizing artificial neural networks and SELDI mass spectrometry for the classification of human tumours and rapid identification of potential biomarkers. Bioinformatics, 2002, 18: 395-404.
  • 4Selbig J, Mevissen T, Lengauer T. Decision tree-based formation of consensus protein secondary structure prediction. Bioinformatics,1999, 15: 1039-1046.
  • 5Camby C D, Remmelink M, Nagy N, et al. Salmon and R Kiss Decision tree induction: a useful tool for assisted diagnosis and prognosis in tumor pathology. Laboratory Investigation, 2002, 76:799-808.
  • 6Jemal A, Murray T, Samuels A. Cancer statistics 2003. CACancer,JCLIN, 2003, 53: 5-26.
  • 7Nambiar U, Dalal Y, Rojymon A, et al. Treatment outcome in gliomas: 10-year experience. Clinical Neurology and Neurosurgery,1997, 99 ( Suppl 1 ): 92.
  • 8Qu Yinsheng, Adam B L, Yasui Y, et al. Boosted decision tree analysis of surface-enhanced laser desorption/Ionization, Mass spectral serum profiles discriminates prostate cancer from noncancer patients. Clin Chem, 2002, 48: 1835-1843.
  • 9Li Jinong, Zhang Zhen, Rosenzweig J, et al. Proteomics and bioinformatics approaches for identification of serum biomarkers to detect breast cancer. Clin Chem, 2002, 48: 1296-1304.
  • 10Zhukov T A, Johanson R A, Cantor A B, et al. Discovery of distinct protein profiles specific for lung tumors and pre-malignant lung lesions by SELDI mass spectrometry. Lung Cancer, 2003,40: 267.

同被引文献55

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部